首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of sequentially combined carbon (SCC) using a symbiotic relationship of methanol and acetic acid on biological nutrient removal were investigated in both the continuous bench scale process consisting of an anoxic, an aerobic and a final settling tank and intensive batch tests. Compared to the use of respective sole carbon sources, methanol and acetic acid, the use of SCC showed superior removal efficiency of nitrogen (98.3%) and phosphorus (approximately 100%). Furthermore, the use of SCC enhanced simultaneous denitrification and phosphorus uptake by denitrifying phosphorus removal bacteria (DPB), resulting in the highest specific denitrification rate (SDNR) of 0.252 g NO3-N/g VSS/d achieved from the first anoxic zone with methanol of 30 mg COD/I. From batch tests performed under carbon limited anoxic conditions, 1 g of nitrate was used by DPB for P-uptake of 1.19 g. According to this result, 0.205 g NO3-N/g VSS/d was accomplished by normal denitrifiers using methanol, and 0.047 g NO3-N/g VSS/d was achieved by DPB. This research also demonstrated that the increase of poly-beta-hydroxybutyrate (PHB) stored by phosphorus accumulating organisms (PAOs) could be of importance in improving aerobic denitrification. The use of SCC produced the highest P-release in the anoxic zone, indicating the amount of PHB would be higher compared to the use of other sole carbons. Therefore, the SCC could be a very effective carbon source for the enhancement of aerobic denitrification as well.  相似文献   

2.
The impact of including membranes for solid liquid separation on the kinetics of nitrogen and phosphorus removal was investigated. To achieve this, a membrane bioreactor (MBR) biological nutrient removal (BNR) activated sludge system was operated. From batch tests on mixed liquor drawn from the MBR BNR system, denitrification and phosphorus removal rates were delineated. Additionally the influence of the high total suspended solids concentrations present in the MBR BNR system and of the limitation of substrate concentrations on the kinetics was investigated. Moreover the ability of activated sludge in this kind of system to denitrify under anoxic conditions with simultaneous phosphate uptake was verified and quantified.The denitrification rates obtained for different mixed liquor (ML) concentrations indicate no effect of ML concentration on the specific denitrification rate. The denitrification took place at a single specific rate (K(2)) with respect to the ordinary heterotrophic organisms (OHOs, i.e. non-PAOs) active mass. Similarly, results have been obtained for the P removal process kinetics: no differences in specific rates were observed for different ML or substrate concentrations. From the P removal batch tests results it seems that the biological phosphorus removal population (PAO) consists of 2 different sets of organisms denitrifying PAO and aerobic PAO.  相似文献   

3.
The rotating biological contactor (RBC) system was operationally modified with a sequencing batch reactor to achieve biological phosphorus removal from a weak domestic sewage along with nitrogen removal. This study utilized three RBC units, of which two units were the main units to remove phosphorus and NH4N and the third RBC unit was used as the storage of wastewater for its minimal effect to the PAO activities in the anaerobic stage during the operation. It was noticed that the biofilm thickness in RBC must be controlled to be less than 1.8 mm in order to achieve more than 70% of P removal with about 60% of N removal. With a settled sewage representing 200 mg/L of COD and 5 mg/L of P, the predicted P content in biofilm was more than 3% and the effluent P concentration was about 1 mg/L. The %P content in biofilm decreased with an increase of influent COD/TP ratios. The COD requirement for anaerobic P release was similar to reported values for the suspended growth system, however, the overall requirement increased with thicker biofilm.  相似文献   

4.
A sequencing batch reactor (SBR) was operated for enhanced biological phosphorus removal (EBPR) and dramatic differences to the P removing capabilities were obtained in different stages of the operation. At one stage extremely poor P removal occurred and it appeared that bacteria inhibiting P removal overwhelmed the reactor performance. Changes were made to the reactor operation and these led to the development of a sludge with high P removing capability. This latter sludge was analysed by fluorescent in situ hybridisation (FISH) using a probe specific for Acinetobacter. Very few cells were detected with this probe indicating that Acinetobacter played an insignificant role in the P removal occurring here. Analysis of the chemical transformations of three sludges supported the biochemical pathways proposed for EBPR and non-EBPR systems in biological models. A change in operation that led to the improved P removal performance included permitting the pH to rise in the anaerobic periods of the SBR cycle.  相似文献   

5.
MBR的脱氮除磷工艺研究   总被引:2,自引:0,他引:2  
采用厌氧/缺氧池/好氧MBR工艺处理模拟的城市生活污水,就系统主要的运行参数对氮磷去除的影响进行了研究.结果表明:TN、TP、NH3-N去除率分别达到80%、90%、95%以上,出水各项指标完全满足城市杂用水水质标准的要求.  相似文献   

6.
In this paper, phosphorus balances are calculated for the wastewater purification and sludge treatment stages for wastewater treatment plants (WWTPs) applying Enhanced Biological Phosphorus Removal (EBPR). The possible P-recovery potential is then estimated and evaluated regarding different locations along the process of wastewater purification and sludge treatment, taking the different phosphorus bonding forms into account. Caused by the more favourable bonding forms in the excess sludge as well as possibly also in the sludge ash a recovery of the phosphorus seems especially favoured for WWTPs with EBPR. The processes available for a P recycling are named, and special regard is given to the Phostrip-process, which is a possible recycling process already tested in practice. Further R&D demand consists in basic research regarding disintegration, fermentation or acidic total digestion of excess sludge followed by phosphorus precipitation including separation of the precipitates, MAP-precipitation and separation from digested sludge and on the ability to extract phosphorus and heavy metals from sewage sludge ash. These investigations are a precondition to enable purposeful process developments. At the present state the cost of recycled phosphorus earned from wastewater, sludge and ash, respectively, are a multiple higher than the costs for raw phosphate taking into account the suitable processes. Thus, up to now no phosphorus recycling with a defrayal of costs is possible. The future importance of phosphorus recycling will depend on the market price for raw phosphate, the recycling costs and, furthermore, on the general political framework.  相似文献   

7.
BICT biological process for nitrogen and phosphorus removal.   总被引:8,自引:0,他引:8  
An updated biological nitrogen and phosphorus removal process--BICT (Bi-Cyclic Two-Phase) biological process--is proposed and investigated. It is aimed to provide a process configuration and operation mode that has facility and good potential for optimizing operation conditions, especially for enhancing the stability and reliability of the biological nutrient removal process. The proposed system consists of an attached-growth reactor for growing autotrophic nitrifying bacteria, a set of suspended-growth sequencing batch reactors for growing heterotrophic organisms, an anaerobic biological selector and a clarifier. In this paper, the fundamental concept and operation principles of BICT process are described, and the overall performances, major operation parameters and the factors influencing COD, nitrogen and phosphorus removal in the process are also discussed based on the results of extensive laboratory experiments. According to the experimental results with municipal sewage and synthetic wastewater, the process has strong and stable capability for COD removal. Under well controlled conditions, the removal rate of TN can reach over 80% and TP over 90% respectively, and the effluent concentrations of TN and TP can be controlled below 15 mg/L and 1.0 mg/L respectively for municipal wastewater. The improved phosphorus removal has been reached at short SRT, and the recycling flow rate of supernatant between the main reactors and attached-growth reactor is one of the key factors controlling the effect of nitrogen removal.  相似文献   

8.
J Lee  J Kim  C Lee  Z Yun  E Choi 《Water science and technology》2005,52(10-11):569-578
In order to accomplish the biological nutrient removal with a weak sewage at low temperature, a hybrid process consisted of anoxic denitrifying phosphorus accumulating organism (dPAO) and nitrifying biological aerated filter (BAF) was studied in both lab and field pilot plants with weak sewage. The biofilm BAF was used as a post-nitrification process that provided sufficient nitrate to suspended growth dPAO. The anoxic/BAF configuration could remove nitrogen and phosphorus appreciably compared to other BNR systems. The enhanced biological phosphorus removal (EBPR) was mainly occurred in anoxic zone of suspended growth reactor. It has been found that P removal efficiency of dPAO was enhanced with an addition of a short oxic zone in suspended reactors compared to that of without oxic zone. However, the degree of aerobic P uptake in oxic zone was far lower than anoxic P uptake. The operating results of field plant indicated that dPAO/BAF configuration successfully reduced the adverse temperature effects at lower than 15 degrees C.  相似文献   

9.
An application of hydrothermal reaction was investigated to reuse excess sludge as carbon sources for enhancement of biological phosphorus removal. Under the tested conditions, solubilization of treated excess sludge did not present much variation, sustaining around 65%, except the results obtained at 400 degrees C. Biodegradability of excess sludge was improved through its content change by the reaction, without much reduction of carbon contents even in 7 min. From the results of respirometric test, readily biodegradable substrate was found at 300 degrees C. Then its portion of reaction products increased with increasing reaction temperature. In the readily biodegradable substrate, acetic and propionic acid, which are useful carbon sources for phosphorus accumulating microorganism under anaerobic condition, increased with increasing reaction temperature. Hydrothermal reaction might be accepted as suitable pretreatment method to treat excess sludge prior to biological treatment process. This technology also secures excess sludge reuse, enhancing biological phosphorus removal and improvement of biological treatment process.  相似文献   

10.
The role of calcium (Ca) in enhanced biological phosphorus removal and its possible implications on the metabolic pathway have been studied. The experience has been carried out in an SBR under anaerobic-aerobic conditions for biological phosphorus removal during 8 months. The variations of influent Ca concentration showed a clear influence on the EBPR process, detecting significant changes in Y(PO4). These Y(PO4) variations were not due to influent P/COD ratio, pH, denitrification and calcium phosphate formation. The Y(PO4) has been found to be highly dependent on the Ca concentration, increasing as Ca concentration decreases. The results suggest that high Ca concentrations produce "inert" granules of polyphosphate with Ca as a counterion that are not involved in P release and uptake. Furthermore, microbiological observations confirmed that appreciable changes in PAO and GAO populations were not observed. This behaviour could suggest a change in the bacterial metabolic pathway, with prevailing polyphosphate-accumulating metabolism (PAM) at low influent Ca concentration and glycogen-accumulating metabolism (GAM) at high concentration.  相似文献   

11.
好氧反硝化生物脱氮研究进展   总被引:1,自引:0,他引:1  
好氧反硝化新型生物脱氮理论的诞生,克服了传统生物脱氮工艺存在的不足,简化了流程,节省了投资和运行费用,提高了脱氮效率.初步探讨了好氧反硝化机理,从不同角度做了理论分析;阐述了有关好氧反硝化脱氮的研究进展;并对好氧反硝化应用前景做了展望,提出了好氧反硝化今后的研究方向重点应放在对好氧反硝化菌的筛选和驯化上,对于好氧反硝化的发生条件、反应中间产物及其反应机理等方面需要进行深入研究.  相似文献   

12.
针对再生水厂实际运行中出现的反硝化生物滤池对总磷(TP)有去除的现象,通过试验研究了在实际工程运行条件下反硝化生物滤池的除磷效能、除磷原理以及进水磷浓度对脱氮效能的影响.结果表明,反硝化生物滤池对溶解性总磷(SP)的去除主要由生物膜中微生物的同化作用完成,在进水SP浓度为0.1~0.5 mg/L时,其去除量与进水浓度大...  相似文献   

13.
Metabolisms related to enhanced biological phosphorus removal (EBPR) were found to be affected when two activated sludges with different EBPR activities were mixed together. In the present study, two laboratory scale EBPR processes were operated in parallel, one of them with higher and another with lower EBPR activities. The activated sludges from the two reactors were mixed together at different mixing ratios. The supernatant was made the same for all mixing ratios, anaerobic-aerobic batch experiments were performed, and acetate uptake rate and phosphate release rate under anaerobic conditions and phosphate uptake rate under aerobic condition were determined. The metabolic rates measured were expected to be linear to the mixing ratios, as the supernatant was the same for all mixing ratios, whereas the metabolic rates were either promoted or inhibited by mixing of sludges. As an indicator for the sludge mixing effect on the metabolic rates, mixing effect intensity (MEI) was introduced. Chemical substances that are produced by microorganisms in activated sludge are proposed to be one of the possible causes of the sludge mixing effect.  相似文献   

14.
Improved design strategies at BNR plants should include cost reductions so that the consumers and water authorities will be more willing to build EBPR plants instead of conventional activated sludge plants. Through efficient design, actual savings in construction and operation costs can be realized. For this reason, anaerobic stabilization of COD needs to be seriously considered during design for direct energy savings at the plants. The existence of anaerobic stabilization has been demonstrated through experimental work. Evaluation of operational data from existing plants has also indicated the definite presence of anaerobic stabilization at plants that include anaerobic zones for EBPR as part of their operation. By exploring the biochemical reactions taking place in EBPR process, particularly the involvement of the storage mechanisms for PHA, poly-P and glycogen storage, the potential mechanisms of the anaerobic stabilization of COD in EBPR systems was explored. The resultant balances pointed out the importance of glycogen metabolism in terms of conserving carbon and providing a sink for the reducing equivalents produced under aerobic conditions. This mechanism is different from those observed in anoxic-aerobic and conventional aerobic activated sludge systems, and appears to be at least partially responsible for the observed anaerobic stabilization of COD.  相似文献   

15.
Three parallel biological anoxic filters (BaFs) were operated to investigate the denitrification kinetics of methanol, brewery wastewater and bakery wastewater. The experiment was conducted within the temperature range of 15-20 °C, with an influent nitrate and carbon dosage of 30 mg/L and 150 mg COD/L (COD: chemical oxygen demand). The denitrification efficiencies of brewery wastewater, bakery wastewater and methanol were 84, 66 and 74%, specific denitrification rates were 1.44, 1.11 and 1.24 kg NO(3)-N/m(3) d, and total nitrogen (TN) removal rates were 74, 62 and 66%, respectively. The volatile attached solid (VAS) tests reveal that methanol has the minimum net biomass yield, so it needs the least carbon to nitrogen (expressed in COD to nitrate, C/N) ratio for complete denitrification. While the brewery wastewater and bakery wastewater need higher C/N ratio to remove all nitrate nitrogen, and they both may need pretreatment to remove phosphate when used as external carbon sources.  相似文献   

16.
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.  相似文献   

17.
Moving bed bioreactors (MBBR) and fixed bed bioreactors (FBBR) were compared for biological phosphorus removal and denitrification. The sorption denitrification P-elimination (S-DN-P) process was selected for this study. Results indicated that all nutrients were removed by the FBBR process compared with the MBBR process: 19.8% (total COD), 35.5% (filtered COD), 27.6% (BOD(5)), 62.2% (acetate), 78.5% (PO(4)-P), and 54.2% (NO(3)-N) in MBBR; 49.7% (total COD), 54.0% (filtered COD), 63.2% (BOD(5)), 99.6% (acetate), 98.6% (PO(4)-P), and 75.9% (NO(3)-N) in FBBR. The phosphate uptake and NO(3)-N decomposition in the FBBR process during the denitrification phase were much higher than for the MBBR process despite being of shorter duration. Results obtained from this study are helpful in elucidating the practical implications of using MBBR and FBBR for the removal of bio-P and denitrification from wastewater.  相似文献   

18.
The conventional mainstream enhanced biological phosphorus removal (EBPR) process depends on the quality of the raw incoming wastewater. An alternative sidestream EBPR process is presented, where the substrates for storage by the polyphosphate accumulating organisms (PAOs) instead come from hydrolysis of the return activated sludge. This process is studied in full-scale at two treatment plants and quantified by means of phosphorus release rates and readily biodegradable COD (RBCOD) accumulation rates. It was seen that not only was a significant amount of RBCOD stored by PAOs but an approximately equal amount was accumulated in the sidestream hydrolysis tank and made available for the subsequent nitrogen removal process. The phosphorus release of the sludge with and without addition of different substrates was furthermore studied in laboratory scale. The study showed that the process is promising and in a number of cases will have significant advantages compared with the conventional mainstream EBPR  相似文献   

19.
The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their effect on the N-removal efficiency, the S-removal efficiency and the product formation during anoxic oxidation of sulphide. One hundred per cent removal of both nitrate and sulphide was achieved at a NLR of 7.96 mmol N-L(-1) x d(-1) (111.44 mg NO3- -N x L(-1) x d(-1)) and at a N/S ratio of 0.89 with complete oxidation of sulphide to sulphate. The oxygen level in the reactor (10%) was found to influence the N-removal efficiency by inhibiting the denitrification process. Moreover, chemical (or biological) oxidation of sulphide with oxygen occurred, resulting in a loss of the electron donor. FISH analysis was carried out to study the microbial population in the system.  相似文献   

20.
Glycogen plays an important role in biological phosphorus removal from wastewaters. Existing measurement techniques often overestimate the glycogen content of the biomass due to the presence of glucose and/or other carbohydrates than glycogen in the cell material. As an alternative to conventional methods a bioassay for glycogen determination in biological phosphorus removal systems was developed. The bioassay is based on the strict stoichiometric coupling between anaerobic acetate uptake and glycogen consumption. In other words, the glycogen concentration of the sludge was determined indirectly by measuring the maximal total acetate uptake by the activated sludge in anaerobic batch tests. The bioassay was successfully tested for the determination of glycogen content of the sludge taken from the lab-scale, acetate-fed, anaerobic-aerobicsettling sequencing batch reactor operating at pH 7±0.1 and temperature of 20'C. This determination of glycogen requires that glycogen (not poly-P) is the limiting factor for anaerobic acetate uptake. A method to verify this assumption based on the effect of pH on phosphate/acetate ratio is proposed and used. The bioassay is easy to apply and gives a direct measure of the glycogen content of bio-P bacteria, but its reliability still needs to be verified at full-scale biological P-removal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号