共查询到19条相似文献,搜索用时 109 毫秒
1.
龙文 《计算机工程与应用》2012,48(21):5-8,57
提出一种新的多目标优化差分进化算法用于求解约束优化问题.该算法利用佳点集方法初始化个体以维持种群的多样性.将约束优化问题转化为两个目标的多目标优化问题.基于Pareto支配关系,将种群分为Pareto子集和Non-Pareto子集,结合差分进化算法两种不同变异策略的特点,对Non-Pareto子集和Pareto子集分别采用DE/best/1变异策略和DE/rand/1变异策略.数值实验结果表明该算法具有较好的寻优效果. 相似文献
2.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。 相似文献
3.
解决多目标优化问题的差分进化算法研究进展 总被引:1,自引:0,他引:1
差分进化(differential evolution,DE)是一种简单但功能强大的进化优化算法.由于其优秀的性能,其诞生之日起就吸引了各国研究人员的关注.作为一种基于群体的全局性启发式搜索算法,差分进化算法在科学和工程中有许多成功的应用.本文对解决多目标优化问题的差分进化算法研究进行了综述,对差分进化的基本概念进行了详细的描述,给出了几种解决多目标优化问题的差分进化算法变体,并且给出了差分进化算法解决多目标优化问题的理论分析,最后,给出了差分进化算法解决多目标优化问题的工程应用,并指出了未来具有挑战性的研究领域. 相似文献
4.
5.
6.
针对差分进化算法(Differential Evolution Algorithm,DE)求解多目标优化问题时易陷入局部最优的问题,设计了一种双向搜索机制,它通过对相反进化方向产生的两个子代个体进行评价,来增强DE算法的局部搜索能力;设计了多种群机制,它可令各子群独立进化一定次数再执行全局进化,以完成子群间进化信息的交流,这一方面降低了算法陷入局部最优的风险,另一方面增强了Pareto解集的多样性,使Pareto前沿面的解集分布更为均匀。实验结果表明,相比于NSGA-II等同类算法,所提方法在搜索Pareto最优解时效率更高,并且Pareto最优解集的精度及分布程度比前者更好。 相似文献
7.
8.
利用双目标模型求解约束优化问题时,由于它们的最优解集并不相等,因此需要增加特殊机制确保求解双目标问题的算法收敛到原问题的最优解.为克服这一缺点,本文首先将约束优化问题转化为新的双目标优化模型,并证明了新模型的最优解集与原问题的最优解集相等.其次,以简单的差分进化为搜索算法,基于多目标Pareto支配关系的非支配排序为选择准则,提出了求解新模型的差分进化算法.最后,用10个标准测试函数的数值试验说明了新模型及求解算法的有效性. 相似文献
9.
10.
多目标优化与自适应惩罚的混合约束优化进化算法 总被引:5,自引:0,他引:5
提出一种多目标优化与自适应惩罚函数相结合的方法来处理约束优化问题.首先利用多目标优化方法提取当前群体中的主要信息;然后进一步用自适应惩罚函数选出最有价值的信息.将这种约束处理技术与一种基于群的算法生成器模型相结合,即可得到一种新的约束优化进化算法.选取10个标准测试函数对新算法的性能进行数值实验,结果表明了所提出方法的有效性和较强的稳健性,与其他尖端算法相比得到了相似或更优的结果. 相似文献
11.
差分进化算法是一种简单有效的进化算法,基于泛化反向学习的机制在进化算法中经常可以引导种群的进化.针对多目标的约束优化问题,提出了一种基于泛化反向学习的多目标约束差分进化算法.该算法采用基于泛化反向学习的机制(generalized opposition-based learning, GOBL)产生变换种群,然后在种群初始化和代跳跃阶段,利用非支配排序、拥挤距离和约束处理技术从原始种群和其变换种群中选择更优的种群个体作为新的种群继续迭代进化;该算法通过采用基于泛化反向学习的机制,可以引导种群个体慢慢向最优的Pareto前沿逼近,以求得最优解集.最后采用多目标Benchmark问题对该算法进行了实验评估,实验结果表明:与NSGA-Ⅱ,MOEA/D及其他的多目标进化算法相比,提出的算法具有更好的收敛性,并且产生的解能够逼近最优的Pareto前沿. 相似文献
12.
基于极大极小距离密度的多目标微分进化算法 总被引:15,自引:4,他引:15
微分进化(differential evolution)是一种新的简单而有效的直接全局优化算法,并在许多领域得到了成功应用.提出了基于极大极小距离密度的多目标微分进化算法.新算法定义了极大极小距离密度,给出了基于极大极小距离密度的Pareto候选解集的维护方法,保证了非劣解集的多样性.并根据个体间的Pareto.支配关系和极大极小距离密度改进了微分进化的选择操作,保证了算法的收敛性,实现了利用微分进化算法求解多目标优化问题.通过对5个ZDT测试函数、两个高维测试函数的实验及与其他多目标进化算法的对比和分析,验证了新算法的可行性和有效性. 相似文献
13.
为提高约束多目标优化算法的分布性和收敛性,提出一种基于双种群的约束多目标优化算法.首先,改进的Harmonic距离一方面去除了Pareto等级较差个体和较远个体的影响,从而改善可行解集的分布性;另一方面有效减少了计算量,可以提高算法效率.其次,新的不可行解集更新方式与可行解集紧密联系,保留目标函数值和约束违反度同时较优的个体,将有助于产生更优可行解,同时提高了种群的多样性和搜索效率.最后,新的变异策略充分利用最优可行解和优秀不可行解的优良信息来引导种群进化,很好地兼顾了探索和开发能力,进而平衡全局搜索和局部搜索.将提出算法与其他3种优秀的约束多目标进化算法在CTP测试集上进行对比实验,结果表明提出算法相比其他算法具有一定的优势,不仅提升了算法的收敛性能,而且保证了Pareto解集良好的分布性. 相似文献
14.
针对电力系统有功网损最小、电压水平最好和电压稳定裕度最大的多目标无功优化问题,提出一种基于差分进化的改进多目标粒子群优化算法。该算法通过对Pareto最优解集的差分进化来增加Pareto最优解的多样性,通过拥挤距离来控制精英集中非支配解的分布,以提高对种群空间的均匀采集;采用擂台赛法则构造多目标Pareto最优解集,较大程度的提高了算法的运行效率;自适应惯性权重和加速度因子的动态变化可增强算法的全局搜索能力。将该算法在IEEE14、IEEE30节点标准测试系统上进行了无功优化仿真,结果表明,基于差分进化的改进多目标粒子群优化算法能够在保持Pareto最优解的多样性的同时具有较好的收敛性能,为多目标无功优化提供了一种新的方法。 相似文献
15.
多目标差分进化算法的电力系统无功优化 总被引:1,自引:0,他引:1
在传统电力系统无功优化( Reactive Power Optimization,RPO) 模型中引入电压水平
指标,建立了以网损最小,电压水平最好为目标的多目标差分进化算法( Differential Evolution
Algorithm) 的模型。针对基本差分进化算法易陷入局部最优解、收敛速度慢的缺点,提出一种
具有自适应参数策略的改进差分进化算法并首次用于多目标电力系统无功优化问题。通过在
算法进化过程中调整变异因子F 和交叉因子CR,在初期增加种群的多样性、扩大全局搜索区
域; 从而可以避免算法陷入局部最优解; 同时在后期也加快了收敛速度。将该算法用于电力系
统无功优化并仿真计算了IEEE-14 节点标准测试系统,结果验证模型和算法的有效性。 相似文献
16.
17.
免疫克隆多目标优化算法求解约束优化问题 总被引:3,自引:1,他引:3
针对现有的约束处理技术的一些不足之处,提出一种用于求解约束优化问题的算法——免疫克隆多目标优化算法(immune clonal multi-objective optimization algorithm,简称ICMOA).算法的主要特点是通过将约束条件转化为一个目标,从而将问题转化为两个目标的多目标优化问题.引入多目标优化中的Pareto-支配的概念,每一个个体根据其被支配的程度进行克隆、变异及选择等操作.克隆操作实现了全局择优,有利于得到高质量的解;变异操作提高算法的局部搜索能力,有利于所得解的多样性;选择操作有利于算法向着最优搜索,而且加快了收敛速度.基于抗体群的随机状态转移过程,证明该算法具有全局收敛性.通过对13个标准测试问题的测试,并与已有算法进行比较。结果表明,该算法在收敛速度和求解精度上均具有一定的优势. 相似文献
18.
差分演化算法是一种简单而有效的全局优化算法。本文将差分演化算法用于求解多目标优化问题,给出了一种维持种群多样性的多目标差分演化算法。该算法采用正交设计法初始化种群,改进差分演化算子,从而有利于维持种群多样性,提高演化算法的搜索性能。初步实验表明,新算法能有效地求解多目标优化问题。 相似文献
19.
针对罚函数法在求解约束优化问题时罚系数不易选取的问题,提出一种基于动态罚函数的差分进化算法.利用罚函数法将约束优化问题转化为无约束优化问题.为平衡种群的目标函数和约束违反程度,结合ε约束法设计了一种动态罚系数策略,其中罚系数随着种群质量和进化代数的改变而改变.采用差分进化算法更新种群直到搜索到最优解.对IEEE CEC... 相似文献