首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of mobile Infostation network can be greatly increased, if, in addition to direct short-range communications between mobile nodes and fixed infostations, nodes also communicate amongst themselves whenever they meet. However, this requires cooperation among mobile nodes that are not necessarily spontaneous for commercial applications. We propose means to create opportunistic cooperation in the context of contention distribution in selfish mobile infostation networks. First, we assume that all nodes have a common interest in all files. We stipulate a social contract such that a bilateral file exchange takes place only when either node obtains something it wants from the exchange. Resulting capacity depends on mobility, the number of files being disseminated, and node density. In addition to the existence of multiuser diversity, our results indicate the existence of data diversity—throughput increases as the number of files of interest to all nodes increases. We also consider the case where nodes have dissimilar interests. Results show that as the level of interest overlap decreases, network performance degrades dramatically. We propose an alternate user strategy in the partially overlapping-interests case and show that network throughput is significantly improved by allowing better use of multiuser diversity. We conclude that through opportunistic cooperation, both data and multiuser diversities exist in noncooperative mobile infostation networks.  相似文献   

2.
Data/content dissemination among the mobile devices is the fundamental building block for all the applications in wireless mobile collaborative computing, known as mobile peer‐to‐peer. Different parameters such as node density, scheduling among neighboring nodes, mobility pattern, and node speed have a tremendous impact on data diffusion in a mobile peer‐to‐peer environment. In this paper, we develop analytical models for object diffusion time/delay in a wireless mobile network to apprehend the complex interrelationship among these different parameters. In the analysis, we calculate the probabilities of transmitting a single object from one node to multiple nodes using the epidemic model of spread of disease. We also incorporate the impact of node mobility, radio range, and node density in the networks into the analysis. Utilizing these transition probabilities, we estimate the expected delay for diffusing an object to the entire network both for single object and multiple object scenarios. We then calculate the transmission probabilities of multiple objects among the nodes in the wireless mobile network considering network dynamics. Through extensive simulations, we demonstrate that the proposed scheme is efficient for data diffusion in the wireless mobile network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Even One-Dimensional Mobility Increases the Capacity of Wireless Networks   总被引:1,自引:0,他引:1  
We study the capacity of ad hoc wireless networks with mobile nodes. The mobility model examined is one where the nodes are restricted to move along one-dimensional paths. We examine the scaling laws for the per-user throughput achievable over long time-scales, making this suitable for applications with loose delay constraints. We show that under this regime of restricted mobility, we attain a constant throughput (i.e.,$Theta(1)$) per user, which is significantly higher than the throughput of fixed networks, which decays as$O(1over sqrtn)$with the number of nodes$n$, as shown by Gupta and Kumar.  相似文献   

4.
Many recent mobility solutions, including derivatives of the well‐known Mobile IP as well as emerging protocols employed by future Internet architectures, propose to realize mobility management by distributing anchoring nodes (Home Agents or other indirection agents) over the Internet. One of their main goals is to address triangle routing by optimizing routes between mobile nodes and correspondent nodes. Thus, a key component of such proposals is the algorithm to select proper mobility anchoring nodes for mobile nodes. However, most current solutions adopt a single‐anchoring approach, which means each mobile node attaches to a sole mobility anchor at one time. In this paper, “we argue that the single‐anchoring approach has drawbacks when facing various mobility scenarios. Then, we offer a novel multi‐anchoring approach that allows each mobile node to select an independent mobility anchor for each correspondent node. We show that in most cases our proposal gains more performance benefits with an acceptable additional cost by evaluation based on real network topologies. For the cases that lead to potential high cost, we also provide a lightweight version of our solution which aims to preserve most performance benefits while keeping a lower cost. At last, we demonstrate how our proposal can be integrated into current Mobile IP networks. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Renato M.  Hamid R.  J.J.   《Ad hoc Networks》2006,4(5):607-620
We show that there is a trade-off among mobility, capacity, and delay in ad hoc networks. More specifically, we consider two schemes for node mobility in ad hoc networks. We divide the entire network by cells whose sizes can vary with the total number of nodes n, or whose size is independent of the number of nodes. We restrict the movement of nodes within these cells, calculate throughput and delay for randomly chosen pairs of source–destination nodes, and show that mobility is an entity that can be exchanged with capacity and delay. We also investigate the effect of directional antennas in a static network in which packet relaying is done through the closest neighbor and verify that this approach attains better throughput than static networks employing omnidirectional antennas.  相似文献   

6.
Variable-Range Transmission Power Control in Wireless Ad Hoc Networks   总被引:1,自引:0,他引:1  
In this paper, we investigate the impact of variable-range transmission power control on the physical and network connectivity, on network capacity, and on power savings in wireless multihop networks. First, using previous work by Steele (1988), we show that, for a path attenuation factor a = 2, the average range of links in a planar random network of A m2 having n nodes is ~aradicA/n1. We show that this average range is approximately half the range obtained when common-range transmission control is used. Combining this result and previous work by Gupta and Kumar (2000), we derive an expression for the average traffic carrying capacity of variable-range-based multihop networks. For a = 2, we show that this capacity remains constant even when more nodes are added to the network. Second, we derive a model that approximates the signaling overhead of a routing protocol as a function of the transmission range and node mobility for both route discovery and route maintenance. We show that there is an optimum setting for the transmission range, not necessarily the minimum, which maximizes the capacity available to nodes in the presence of node mobility. The results presented in this paper highlight the need to design future MAC and routing protocols for wireless ad hoc and sensor networks based, not on common-range which is prevalent today, but on variable-range power control  相似文献   

7.
User mobility is of critical importance when designing mobile networks. In particular, "waypoint" mobility has been widely used as a simple way to describe how humans move. This paper introduces the first modeling framework to model waypoint-based mobility. The proposed framework is simple, yet general enough to model any waypoint-based mobility regimes. It employs first order ordinary differential equations to model the spatial density of participating nodes as a function of (1) the probability of moving between two locations within the geographic region under consideration, and (2) the rate at which nodes leave their current location. We validate our model against real user mobility recorded in GPS traces collected in three different scenarios. Moreover, we show that our modeling framework can be used to analyze the steady-state behavior of spatial node density resulting from a number of synthetic waypoint-based mobility regimes, including the widely used Random Waypoint model. Another contribution of the proposed framework is to show that using the well-known preferential attachment principle to model human mobility exhibits behavior similar to random mobility, where the original spatial node density distribution is not preserved. Finally, as an example application of our framework, we discuss using it to generate steady-state node density distributions to prime mobile network simulations.  相似文献   

8.
Extending the Lifetime of Wireless Sensor Networks Through Mobile Relays   总被引:1,自引:0,他引:1  
We investigate the benefits of a heterogeneous architecture for wireless sensor networks (WSNs) composed of a few resource rich mobile relay nodes and a large number of simple static nodes. The mobile relays have more energy than the static sensors. They can dynamically move around the network and help relieve sensors that are heavily burdened by high network traffic, thus extending the latter's lifetime. We first study the performance of a large dense network with one mobile relay and show that network lifetime improves over that of a purely static network by up to a factor of four. Also, the mobile relay needs to stay only within a two-hop radius of the sink. We then construct a joint mobility and routing algorithm which can yield a network lifetime close to the upper bound. The advantage of this algorithm is that it only requires a limited number of nodes in the network to be aware of the location of the mobile relay. Our simulation results show that one mobile relay can at least double the network lifetime in a randomly deployed WSN. By comparing the mobile relay approach with various static energy-provisioning methods, we demonstrate the importance of node mobility for resource provisioning in a WSN.   相似文献   

9.
Mobile ad hoc networks are characterized by a lack of a fixed infrastructure and by node mobility. In these networks data transfer can be improved by using mobile nodes as relay nodes. As a result, transmission power and the movement pattern of the nodes have a key impact on the performance. In this work we focus on the impact of node mobility through the analysis of a simple one-dimensional ad hoc network topology. Nodes move in adjacent segments with reflecting boundaries according to Brownian motions. Communications (or relays) between nodes can occur only when they are within transmission range of each other. We determine the expected time to relay a message and compute the probability density function of relaying locations. We also provide an approximation formula for the expected relay time between any pair of mobiles.  相似文献   

10.
Too much mobility limits the capacity of wireless ad hoc networks   总被引:1,自引:0,他引:1  
We show that for highly mobile ad hoc networks, the benefits of mobility are overshadowed by the cost of mobility in terms of the increased channel uncertainty and network homogeneity. We assume a block-fading channel model with jointly isotropic fading. We allow relays which can transmit and receive simultaneously. Under fairly general assumptions for the users' channel fades and additive noise distributions we show that increasing the number of transmit antennas M at any node beyond the channel coherence time Tc (measured in units of channel uses) does not affect the capacity region of the ad hoc network. For a fast-fading (coherence time TclesM) homogeneous network, we determine the exact capacity region of the ad hoc network for any partition of the nodes into source, destination, and relay nodes. The optimal strategy is such that only one pair of source-destination nodes is active at a time while all the other nodes are inactive. There is no benefit from relaying and at high signal-to-noise ratio (SNR) the total throughput grows at most double-logarithmically with the number of nodes. Even for the case of slow fading, where the channel variations are slow enough that the receiver can track the channel perfectly, the inability of the transmitter to track the network topology limits the total throughput growth rate to no more than logarithmic in the number of nodes. Spatial correlation is shown to enhance the capacity region of the Rayleigh-fading ad hoc network  相似文献   

11.
Wireless ad hoc networks are growing important because of their mobility, versatility, and ability to work with fewer infrastructures. The mobile ad hoc network is an autonomous system consisting of mobile nodes connected with wireless links. Establishing a path between two nodes is a complex task in wireless networks. It is still more complex in the wireless mobile ad hoc network because every node is no longer as an end node and an intermediate node. In this paper, it focuses on design of connectionless routing protocol for the wireless ad hoc networks based on the mobile agent concept. The proposed model tries to discover the best path taking into consideration some concerns like bandwidth, reliability, and congestion of the link. The proposed model has been simulated and tested under various wireless ad hoc network environments with the help of a different number of nodes. The results demonstrate that the proposed model is more feasible for providing reliable paths between the source and destination with the minimum control message packets over the network. It has delivered more number of packets to the destination over the network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A personal network (PN) is a network of devices belonging to a person. It can consist of a number of ad hoc sub-networks which are linked together through the Internet. We study battery-aware routing for multi-hop connectivity in sub-networks of PNs, and propose a new algorithm. The proposed algorithm takes the advantage of having mains-connected devices in a PN to direct the traffic to such devices and avoid relaying over nodes with low battery energy. A consequence of this strategy is directing the traffic load to static nodes of the network as well, since mains-connected nodes are static while battery-powered nodes could be mobile. This results in less route failures due to less mobility of nodes along a chosen path. We comprehensively compare the performance of our proposed algorithm with the performance of some well-known algorithms from the literature. We consider the effect of node density, routing overhead, heterogeneity of nodes in terms of their power supplies, gateway-oriented communication, mobility of nodes, and transmission power control, on the performance of battery-aware routing algorithms in PNs. Taking into account various parameters and different scenarios, we show that directing the traffic to mains-powered nodes can profoundly increase operational lifetime of the network. Our algorithm, as well as the results of our work, can also be applied to other types of ad hoc networks with heterogeneous power supplies.  相似文献   

13.
The paper presents a new approach investigating mobile ad hoc network connectivity. It is shown how to define and evaluate the connectivity probability of a mobile network where the position of the nodes and the link quality changes over time. The connectivity probability is a measure that can capture the impact of the node movement on the network connectivity. A number of mobility models is considered ranging from the classical Random Direction model to the Virtual World model based on the mobility measurements of a multi–player game. We introduce an Attractor model as a simple way to model non–homogeneous node distribution by incorporating viscosity regions in the simulation area. Methods of ergodic theory are used to show the correctness of the approach and to reduce the computational time. Simulation results show how the node density distribution affects the network connectivity.  相似文献   

14.
We present statistical models to accurately evaluate the distribution of the lifetime of wireless links in a mobile ad hoc network (MANET) in which nodes move randomly within constrained areas. We show that link lifetime can be computed through a two-state Markov model and further apply the computed statistics to the optimization of segmentation schemes of an information stream. Summarizing all these results, we further provide a comprehensive analysis on throughput, delay, and storage requirements for MANETs with restricted node mobility.  相似文献   

15.
Coverage in Hybrid Mobile Sensor Networks   总被引:1,自引:0,他引:1  
This paper considers the coverage problem for hybrid networks which comprise both static and mobile sensors. The mobile sensors in our network only have limited mobility, i.e., they can move only once over a short distance. In random static sensor networks, sensor density should increase as O(log L + k log log L) to provide k-coverage in a network with a size of L. As an alternative, an all-mobile network can provide k-coverage with a constant density of O(k), independent of network size L. We show that the maximum distance for mobile sensors is O( 1/sqrt(k) log^(4/3)(kL)). We then propose a hybrid network structure, comprising static sensors and a small fraction of O( 1/sqrt(k)) of mobile sensors. For this network structure, we prove that k-coverage is also achievable with a constant sensor density of O(k). Furthermore, for this hybrid structure, we prove that the maximum distance which any mobile sensor has to move is bounded as O(log^(3/4)L). We then propose a distributed relocation algorithm, where each mobile sensor only requires local information in order to optimally relocate itself. We verify our analysis via extensive numerical evaluations and show an implementation of the mobility algorithm on real mobile sensor platforms.  相似文献   

16.
Time synchronization plays an important role in wireless sensor network applications and energy conservation. In this paper, we focus on the need of time synchronization in underwater acoustic mobile sensor networks (UAMSNs). Several time synchronization algorithms have been carried out in this issue. But most of them are proposed for RF-based wireless sensor networks, which assume that the propagation delay is negligible. In UAMSNs, the assumption about rapid communication is incorrect because the communication is primarily via acoustic channel, so the propagation speed is much slower than RF. Furthermore, the propagation delay in underwater environment is time-varying due to the nodes’ mobility. We present an energy efficiency distributed time synchronization algorithm (called “E2DTS”) for those underwater acoustic node mobility networks. In E2DTS, both clock skew and offset are estimated. We investigate the relationship between time-varying propagation delay and nodes mobility, and then estimate the clock skew. At last skew-corrected nodes send local timestamp to beacon node to estimate its clock offset. Through analysis and simulation, we show that it achieves high level time synchronization precision with minimal energy cost.  相似文献   

17.
Mobility is gaining a tremendous interest among Internet users and wireless access networks are increasingly being installed to enable mobile usage. Internet mobility requires solutions to move between access networks with maintained network connectivity. Seamless mobility in turn means that the experience of using a service is unaffected while being mobile. Communication in next generation networks will use multiple access technologies, creating a heterogeneous network environment. Further, roaming between network service providers may take place. To enable mobile nodes to move between access networks within as well as between network service providers with minimal disruption, nodes should be able to maintain multiple active network connections. With the usage of multihomed nodes, seamless mobility can be achieved in already installed infrastructures, not providing mobility support. Mobility in heterogeneous access networks also requires network selections that scale for services. In this article we propose an architecture where application service providers and network service providers define service levels to be used by a mobile node and its user. The user selects a service and the service level from an application service provider. When performing access network selection, information received as part of an application service level will be used to find a network that supports the service required. The performance of available access networks will be monitored and considered when making the decision. Our proposed architecture provides solutions to move flows between interfaces in real-time based on network performance, quality of service signalling to correspondent nodes, and cancellation of flows to give way for more important traffic.  相似文献   

18.
Many research results in the direction of wireless network capacity are based on the homogeneous Poisson node process and random homogeneous traffic. However, most of the realistic wireless networks are inhomogeneous. And for this kind of networks, this paper gives a constructive capacity lower bound, which may be effective on network designing. To ensure significant inhomogeneities, we select both inhomogeneous node process and traffic. We divide the transmission into two parts: intra-cluster transmission and inter-cluster transmission. Within each distinct cluster, a circular percolation model is proposed and the highway system is established. Different with regular rectangle percolation model, the highway in our model is in the radial direction or around the circle. Based on this model, we propose a routing strategy and get the intra-cluster per-node rate. In the following, among these clusters, we set many “information pipes” connecting them. By getting the results of per-node transmission rate of each part, we can find that the bottleneck of the throughput capacity is caused by the difference of the node density all over the network region. Specially, the lower bound interval of the capacity can be easily obtained when the traffic is inhomogeneous.  相似文献   

19.
Network lifetime maximization is challenging particularly for large-scale wireless sensor networks. The sensor nodes near the sink node tend to suffer high energy consumption due to heavy traffic relay operations, becoming vulnerable to energy depletion. The rationale of the sink mobility approach is that as the sink node moves around, such risk of energy depletion at some nodes can be alleviated. In this paper, we first obtain the optimal mobile sink sojourning pattern by solving a linear programming model and then we mathematically analyze why the optimal solution exhibits such sojourning pattern. We use the insights from this analysis to design a simple practical heuristic algorithm for sink mobility, which utilizes only local information. Our heuristic is very different from the existing algorithms which often use the traffic volume as the main decision factor, in that we consider the variance of residual energy of neighboring sensor nodes. The simulation results show that our scheme achieves near-optimal network lifetime even with the relatively low moving speed of the mobile sink.  相似文献   

20.
Balancing the load among sensor nodes is a major challenge for the long run operation of wireless sensor networks. When a sensor node becomes overloaded, the likelihood of higher latency, energy loss, and congestion becomes high. In this paper, we propose an optimal load balanced clustering for hierarchical cluster‐based wireless sensor networks. We formulate the network design problem as mixed‐integer linear programming. Our contribution is 3‐fold: First, we propose an energy aware cluster head selection model for optimal cluster head selection. Then we propose a delay and energy‐aware routing model for optimal inter‐cluster communication. Finally, we propose an equal traffic for energy efficient clustering for optimal load balanced clustering. We consider the worst case scenario, where all nodes have the same capability and where there are no ways to use mobile sinks or add some powerful nodes as gateways. Thus, our models perform load balancing and maximize network lifetime with no need for special node capabilities such as mobility or heterogeneity or pre‐deployment, which would greatly simplify the problem. We show that the proposed models not only increase network lifetime but also minimize latency between sensor nodes. Numerical results show that energy consumption can be effectively balanced among sensor nodes, and stability period can be greatly extended using our models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号