首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文介绍的微型晶体振荡器有普通型、快速加热简易恒温型、多信号输出等三种类型晶振.其中快速加热简易恒温型在常温下工作时,频率—温度特性达10~(-7),在正温范围工作时,频—温特性达lO~(-6)/(0℃~80℃),多信号输出型目前已作出的每台晶振有1OMHz、5MHz、1MHz、500KHz、1OOKHz等五个频率的信号输出,其频率稳定度为10~(-5).晶振的振荡电路、放大电路、温控电路及分频电路,均以集成技术来实现,并与石英晶体谐振器—同用电阻焊密封于16×16×5.5(mm)~3的金属盒内,其重小于5克.  相似文献   

2.
黎敏强  黄显核  谭峰  石明江   《电子器件》2006,29(2):592-594
应用新的温度补偿方法研制了100.450MHz五次泛音温度补偿晶体振荡器,该振荡器由450kHz陶瓷振荡器,100MHz五次泛音晶体振荡器,混频器,晶体滤波器组成。450kHz陶瓷振荡器的输出频率与100MHz晶体振荡器的输出频率混频,滤波,取其和频。直接利用450kHz陶瓷振荡器输出频率对100MHz晶体振荡器进行温度补偿。实验结果表明,在0~70℃该振荡器的频率-温度稳定度<±7×10-7,初步测量相位噪声为-119dBc@1kHz。  相似文献   

3.
本文介绍空载电子设备用的宽温高频率稳定度C波段体效应振荡器。文中叙述了工作在E_(010)模式圆柱腔的两种振荡器。不用高Q外腔稳频而用简单的双金属结构和介质加载的“综合”补偿法,在-40°——+85℃较宽的温度范围内,使高低温频漂小于±2MHz,最好的可达±1MHz,即频温系数为6×10~(-6)-3×10~(-6)/℃。  相似文献   

4.
小型SC切恒温晶体振荡器的研制   总被引:2,自引:0,他引:2  
论述了高稳定度、小体积恒温晶体振荡器 (OCXO)的热学结构设计和测温控温方法。采用 SC切三次泛音石英晶体谐振器作为振荡元件 ,利用 DS1 82 0作为温度探测器 ,以 PIC1 6 F84作为微控制器 ,通过 PID算法和脉宽调制技术 (PWM)对振荡电路进行温度调节与控制 ,以达到恒温目的。研制出体积为 40 mm× 40 mm× 1 4mm、频温特性达 1 0 -8的高稳恒温晶体振荡器  相似文献   

5.
用声光晶体对氩离子激光作频率调制,获得了碘分子的差拍饱和吸收信号。将得到的斜率极陡的—阶微商形式的饱和吸收信号作为鉴频曲线把氩离子频率激光稳定到~(127)I_2分子的p(13)43—0的a_3超精细分量上。通过与一稳定到相同精细分量的稳频氩离子激光拍频,给出激光频率稳定性优于±6.5×10~(-12),重复性优于±3.4×10~(-11)。  相似文献   

6.
本文介绍了一种采用A_7介质谐振器制成的S波段介质稳频调制器的设计和实验结果。采用加载带阻滤波稳频获得了良好的稳频效果。在-40℃~+50℃温度范围内,输出功率为10毫瓦时,频率稳定度为±0.4×10~(-4)~±1.46×10~(-4),输出功率≥40毫瓦时,频率稳定度为±3×10~(-4)。调频范围大于600千赫,电调灵敏度为200千赫/伏,调频非线性<6%;体积仅有(60×60×30)立方毫米,可以同时传送遥控(遥测)和话音。  相似文献   

7.
本文介绍一种低成本、小体积、高可靠、易生产的晶体振荡器。它是用 PTC 陶瓷片作晶体简易控温源,再用温度系数合适的主负载电容进行无源补偿,从而可获小于±5×10~(-7)(-25~+55℃)的频率稳定度。  相似文献   

8.
本文介绍一种空间电子设备用的5公分15瓦脉冲体效应振荡器。这种振荡器采用E_(010)模式的圆柱腔,用简单的双金属结构和介质加载的“综合”补偿法解决了频率稳定度的问题。在-40~+70℃的温度范围内频漂小于±2MHz,频温系数达到3~6×10~(-6)/℃。  相似文献   

9.
<正> 众所周知,石英晶体振荡器最显著的优点是具有很高的频率稳定度,可以达到1×10~(-10)/天~1×10~(-11)/天量级。而在LC或RC振荡器中尽管采取各种稳频措施,也很难突破10~(-5)量级。正由于它的这一独特之处,因此在许多技术领域中为获得高稳定度的正弦波信号都是采用晶体振荡器来实现的。  相似文献   

10.
本电路的特点是电路筒单,结构紧凑,频率控制范围较宽、灵敏度(5320弧度/伏·秒)、线性度(±0.5)和稳定度(1.7×10~(-5))都比较好。  相似文献   

11.
刘玲玲  U.Brand 《中国激光》1992,19(10):749-754
分别用声光晶体对氩离子激光515nm谱线作幅度和频率调制,实验研究了碘吸收的差拍饱和吸收信号。用频率调制方法得到斜率极陡的一阶微商饱和吸收信号,并将它作为鉴频曲线把氩离子激光频率稳到~(127)I_2分子的P(13)43-0的a_3线上。通过与一稳定到相同精细分量上的稳频氩离子激光器拍频,绐出激光频率稳定性优于±4.7×10~(-12)。  相似文献   

12.
石英晶体振荡器容易获得稳定的振荡频率,其应用领域相当广泛,如通信、航空、航海以及信息处理领域都使用石英晶体振荡器。通常,根据要求的输出频率和环境温度条件,通过合理地设计振荡电路,频率稳定度在l×10~(-4)到1×10~(-9)范围内可供自由选择。 按照日本工业标准JIS,把现行石英晶体振荡器产品分成为以下4种类型:  相似文献   

13.
本文讨论了声表面波压控(调频)振荡器的原理及设计方法,并实际制作了振荡器,中心频率为657MHz,频偏约为1.5×10~(-3),平均压控灵敏度为98kHz/V,线性度±2%,温度稳定度为±3.7×10~(-5)(-20—+60℃)。  相似文献   

14.
范建功  冯全源 《微电子学》2016,46(4):493-496
在传统带隙基准源的基础上,设计了一种改进型带隙基准源电路,能很好地抑制三极管集电极电流变化对输出的影响,获得很低的温度系数和很高的电源电压抑制比。基于BCD 0.18 μm工艺库,仿真结果表明,当电源电压VIN为4.5 V,温度范围为-40 ℃~140 ℃时,基准源电路的输出电压范围为1.2567~1.2581 V,温度系数为6.3 ×10-6/℃;电源电压在2.5~5 V范围内变化时,基准源电路输出的最大变化仅为1.66×10-4 V,线性调整率为0.006 64 %;低频电源电压抑制比高达97 dB。过温保护电路(OTP)仿真表明,该基准源电路有良好的温度特性,温度不高于140 ℃都可正常工作。  相似文献   

15.
载波300路主群信号编码设备要求时钟频率稳定度为±20×10~(-6)。但是,石英谐振器在宽温度(-40~ 70℃)范围内的频率相对偏移量为10~(-5)。为了满足钟频稳定度、设备小型化和开机快速工作的要求,我们对石英晶体振荡器采用温度补偿方法,使得34.368兆赫晶体振荡器的频率稳定度在环境温度(0~50℃)内达到10~(-6)的指标。下面对温度补偿晶体振荡器作一些简要叙述。  相似文献   

16.
本文运用电磁场理论对圆柱形介质谐振器进行了分析和计算,并设计制作了C波段反馈型介质谐振器稳频FET振荡器,其工作频率f_0=7.4GHz,输出功率P≥30mW,频率稳定度为±2×10~(-5)(-10~+50℃),频率温度系数为0.67ppm/℃。  相似文献   

17.
梁珣  黄显核  樊燕红  谭峰  黎敏强   《电子器件》2005,28(3):486-488,493
主要提出了一种新型的适于集成的模拟温度补偿晶体振荡器(ATCXO)的设计方案,并详细介绍了这种ATCXO的构成和补偿原理,它不仅可以很好的改善相位噪声,而且体积小适合于集成,以及批量生产。在移动通信领域,特别是在移动通信手机中可以获得广泛应用。初步的实验结果表明:经过补偿后的振荡器在温度范围为0℃~+70℃的频率-温度稳定度可达±1.5×10-6。  相似文献   

18.
本文叙述了温度补偿晶体振荡器的发展,国内外水平及各种补偿方法和应用电路,文中还介绍了在生产中应用的自动测试系统和补偿元件的计算方法,在-40-+70度的温度内采用模拟补偿法可以达到±(1-5)×10^-7的频率稳定度,采用模拟一一数字混合补偿法和微机补偿法可以达到±(1-5)×10^-5的频率稳定度。  相似文献   

19.
一种新的高频泛音晶体振荡器温度补偿方法   总被引:1,自引:1,他引:0  
黎敏强  黄显核  谭峰   《电子器件》2005,28(2):318-320
提出了一种新的高频泛音晶体振荡器温度补偿的方法,它能克服了目前泛音晶振温补中均采用加电感和倍频的方法带来的稳定度下降和相噪恶化的缺点。该系统利用低频陶瓷振荡器的输出频率通过混频对高次泛音石英晶振进行温度补偿。系统采用微机控制开关电容阵,有利于集成。初步补偿结果表明,利用本文提出的补偿方法进行补偿的100MHz五次泛音石英晶体振荡器在0~70℃温度范围内频率-温度稳定性≤±2×10-6。  相似文献   

20.
本稳流电源的输出电流为0—7安培。电流稳定度优于2.5×10~(-6)/3分钟(包括漂移、纹波及噪声)。电流调整电路由两块十位数模变换器及集成电路组成。电流的每步调整量可分别是1×10~(-6)、1.5×10~(-5)、4×10~(-3)、2.5×10~(-2)。本文介绍了电路的设计和测量结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号