首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为了探究零间隙压气机流动失稳机理,采用全通道非定常数值模拟方法研究了一台零间隙斜流压气 机转子的失稳机理,数值模拟过程中在转子出口施加了随时间动态变化的背压模拟压气机转子节流,非定常 数值计算结果表明零间隙斜流压气机转子仍然表现为典型突尖流动失稳特征。通过详细地分析斜流压气机 转子节流过程中不同阀系数对应的压气机内部流场结构,结果表明:尽管零间隙斜流压气机无叶顶泄漏特 征,但随着对压气机节流,转子叶片尾缘率先出现流动分离,进一步节流,尾缘流动分离表现为一方面在周向 范围加剧,另一方面分离点逐渐向上游移动,造成通道严重堵塞,最终引发相邻叶片通道尾缘回流和叶片前 缘流动溢出进而诱发叶片通道内部出现径向涡结构,从而形成压气机突尖失速先兆。  相似文献   

2.
为研究跨声速轴流压气机失速特性,采用节流阀门模型使跨声速轴流压气机Rotor35进入数值失速,得到了失速过程中的内部流场,捕捉到了失速团从产生到发展壮大的过程,发现失速起始于叶片顶部,逐渐向轴向、径向和周向发展,失速团绕着旋转轴以低于转子转速同方向旋转。通过对比不同时刻的流场特征,压气机进入失速时在转子的叶顶区域流场同时发生了"前缘溢流"和"尾缘回流"的现象。叶顶间隙泄漏流与叶片吸力面分离流形成的流道分离涡的不断发展扩大,最终使压气机完全失速。  相似文献   

3.
采用时间精确求解法对跨声速轴流式压气机转子NASA Rotor35单流道进行了三维非定常数值模拟,研究了叶顶区域流场的时间非定常波动特性。将叶顶区域流场的非定常解作为快照,采用本征正交分解(POD)方法提取POD模态,进一步分析了叶顶近失速点流场的流动特性。结果表明:在近峰值效率点的大质量流量工况下,叶顶区域流场呈现出稳定性,基本不发生随时间波动的特性;在近失速点的小质量流量工况下,叶顶区域流场呈现周期性的波动特性,由激波与叶顶间隙泄漏涡形成的破碎、通道中部未形成泄漏涡的相邻叶片泄漏流流线以及来流一起形成的叶顶二次涡是叶顶非定常周期性波动形成的必要条件。  相似文献   

4.
为了研究叶顶区域非定常流动特性,对跨声速轴流压气机转子NASA Rotor37在多工况下进行了三维非定常数值模拟,采用谱本征正交分解(Spectral Proper Orthogonal Decomposition,SPOD)方法从叶顶区域流场中提取出时空耦合的单频相干结构进行分析。研究结果表明:相比于常规分析方法,SPOD方法能够高效地从非定常流场中识别出流动特征,有助于揭示叶顶区域流动规律;在“小流量”工况下叶顶区域流动呈现出强的非定常性,且随着质量流率的减小叶顶区域非定常流动增强、波动范围增加、波动频率呈现出“阶跃式”下降;造成叶顶区域流场非定常周期性波动的主要原因是叶顶间隙泄漏涡破碎区的扰动以及叶顶间隙泄漏涡破碎后与主流相互作用所形成的叶尖二次涡的波动。  相似文献   

5.
跨音速轴流压气机间隙泄漏流流动特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
间隙泄漏流对轴流压气机的旋转失速造成严重影响,通过对跨音速压气机 NASA 转子 37 进行单通道非定常及多通道非定常数值模拟,单通道非定常计算揭示,在近失速工况下,叶项存在间隙泄漏流自身非定常性,并且比较了两个不同背压条件下的非定常模拟结果,当出口背压较大的情况下,间隙泄漏流非定常性很不稳定,而当出口背压较小时,泄漏流非定常性稳定;多通道非定常数值模拟结果显示,在近失速工况下,当出口背压较大的情况下,间隙泄漏流非定常振荡,触发突尖型旋转失速先兆,具体表现为叶尖前缘间隙泄漏流溢出,而当出口背压较小的情况下,间隙泄漏流非定常性始终较为稳定.  相似文献   

6.
端壁相对运动对压气机叶栅间隙流场影响的数值模拟   总被引:3,自引:0,他引:3  
压气机端壁与叶片间的相对运动是影响叶顶间隙气流流动的重要因素.采用数值模拟的方法考察了端壁运动对不同叶顶间隙压气机叶栅内三维流场的影响.结果表明:端壁相对运动改变了叶栅间隙流场结构,叶栅通道内出现向相邻叶片压力面运动的刮削泄漏涡,上通道涡及叶顶分离涡受到抑制,叶尖负荷增大,间隙泄漏流量增加,叶栅总损失由于叶顶区掺混损失减少而减少.  相似文献   

7.
为分析自发射流条件下非定常尾迹对叶顶间隙流动、S1流面和S2流面上流场参数、叶尖泄漏比和动叶载荷变化的影响,采用数值模拟方法,以Durham叶栅为原型,将动、静叶栅流场通过滑移网格技术耦合,开展非定常计算。结果表明:在静叶非定常尾迹的影响下,转子区域流场内的流动、叶尖间隙泄漏比及叶片周向载荷均呈现出周期性变化的特征;考虑非定常效应和端壁相对运动效应,相较于无叶尖射流,单孔叶尖自发射流可使泄漏比降低4.57%,比定常计算预测的泄漏比低3.43%,表明要想准确获得叶尖射流条件下的叶栅流动特性和叶尖泄漏抑制效果,其间的非定常效应不可忽略。  相似文献   

8.
为了解决压气机级间泄漏与二次流流动问题,航空发动机轴流压气机静叶根部与转子之间通常采用篦齿进行封严。为研究封严篦齿泄漏流对压气机性能的影响,基于某轴流压气机建立了带封严篦齿真实结构的几何模型,采用三维数值模拟的方法,研究了篦齿泄漏流对某轴流压气机主流涡系结构和流动损失的影响,并探究了其影响机理。结果表明:封严篦齿泄漏流使压气机的压比和效率都有不同程度的下降;篦齿泄漏会增强上游转子叶根吸力面的尾缘角区涡和静子叶根吸力面的马蹄涡,并使设计工况的上游转子和静子的流动损失分别增大3.1%和13.1%;静子叶根后附面层低能流体被抽吸,改善了下游流场,使下游转子流动损失减小2.4%;在近喘振点,由于压气机内流场恶化严重,篦齿泄漏带来的流场变化并不显著,泄漏流对主流影响小。  相似文献   

9.
《动力工程学报》2016,(11):870-876
为了探究叶尖射流对涡轮叶栅流场特性的影响,搭建了一个小尺度低速叶栅风洞实验台,利用粒子成像测速(PIV)技术对带有自发射流的涡轮叶顶间隙流场进行了直接测量,获得了低雷诺数(Re=6.46×103~3.23×104)下射流孔附近的流动图像及速度测量结果,展示了叶顶间隙内层流和紊流2种流态下自发射流与泄漏流的相互作用过程,揭示了低雷诺数工况下(涵盖层流到紊流的转捩)叶尖射流抑制泄漏流的作用机理及影响因素,并对叶尖射流尾迹中出现的类卡门涡街的涡分布现象进行了探讨.结果表明:叶尖射流的引入在泄漏流抑制方面取得一定收益,但同时也进一步加剧了叶顶间隙流动的复杂性.  相似文献   

10.
《动力工程学报》2016,(10):801-809
基于节流阀函数以及SSTk-ω湍流模型,对某电站两级动叶可调式轴流风机的非定常失稳过程进行数值模拟,分析了3种轴向间距对风机失速先兆起始位置、表现形式以及失速三维非定常演化过程的影响机制.结果表明:风机稳定运行范围随着轴向间距的缩短得到拓宽;不同轴向间距下,第二级动叶内首先出现失速先兆,且失速先兆表现形式相同,均为突尖型;轴向间距增大时,失速先兆从第二级动叶传播至第一级动叶所用时间增加;轴向间距对叶顶间隙分离涡的产生具有重要影响,轴向间距较小时,分离涡主要由相邻流道的泄漏流绕过尾缘附近反向流入流道并与主流相互作用形成,轴向间距较大时分离涡的形成主要与叶顶间隙的泄漏流有关.  相似文献   

11.
<正>It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception.Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor.For steady analysis,the predicted results agree well with the experimental data for the estimation of compressor rotor global performance.For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage.On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale-spike type rotating stall inception at blade tip region.It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased,the rotating stall cell was further developed in the blade passage.  相似文献   

12.
A numerical study is conducted to investigate the influence of inlet flow condition on tip leakage flow (TLF) and stall margin in a transonic axial rotor.A commercial software package FLUENT,is used in the simulation.The rotor investigated in this paper is ND_TAC rotor,which is the rotor of one-stage transonic compressor in the University of Notre Dame.Three varied inlet flow conditions are simulated.The inlet boundary condition with hub distortion provides higher axial velocity for the incoming flow near tip region than that for the clean inflow,while the incoming main flow possesses lower axial velocity near the tip region at tip distortion inlet boundary condition.Among the total pressure ratio curves for the three inlet flow conditions,it is found that the hub dis-torted inlet boundary condition improves the stall margin,while the tip distorted inlet boundary condition dete-riorates compressor stability.The axial location of interface between tip leakage flow (TLF) and incoming main flow (MF) in the tip gap and the axial momentum ratio of TLF to MF are further examined.It is demonstrated that the axial momentum balance is the mechanism for interface movement.The hub distorted inflow could de-crease the axial momentum ratio,suppress the movement of the interface between TLF and MF towards blade leading edge plane and thus enhance compressor stability.  相似文献   

13.
Unsteady tip clearance flow in an isolated axial compressor rotor   总被引:3,自引:0,他引:3  
Introduction Background It is well known that the rotor tip clearance flow has profound effects on the performance and stability of axial compressor (Wisler[1], Howard[2]). Numerous studies on the tip clearance flow were carried out in the past fifty years. Rain[3] proposed a model to predict the loss due to tip leakage flow assuming that the kinetic energy of the leakage flow velocity component normal to the mean chamber line would be dissipated. Lakshminarayana[4] developed a model to pre…  相似文献   

14.
为了分析叶顶间隙泄漏涡的影响范围、运行轨迹和强度的变化规律,以某汽轮机高压级为研究对象,采用SSTκ-ω湍流模型,应用PISO算法对叶项间隙内的非定常流动进行了数值模拟.结果表明:叶顶间隙泄漏流是有规律的周期性的非定常流动,泄漏涡的影响范围、运行轨迹和强度随时间和叶顶间隙的变化而变化;泄漏流对主流的影响呈现出从弱到强、再从强到弱的周期性变化规律;叶顶间隙泄漏涡在丁/4时刻的强度和影响范围均达到最大,在T/2时刻,静叶脱落涡和动叶吸力面前部的泄漏涡混合形成新的涡系,而动叶吸力面后部的泄漏涡却与其边界层的脱涡混合,离开吸力面.  相似文献   

15.
A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper. The first step of this method is the derivation of similarity criteria for tip clearance flow, on the basis of an inviscid model of tip clearance flow. The aerodynamic parameters needed for the model design are then obtained from a numerical simulation of the target high-speed compressor rotor. According to the aerodynamic and geometric parameters of the target compressor rotor, a large-scale low-speed rotor blade is designed with an inverse blade design program. In order to validate the similitude method, the features of tip clearance flow in the low-speed model compressor are compared with the ones in the high-speed compressor at both design and small flow rate points. It is found that not only the trajectory of the tip leakage vortex but also the interface between the tip leakage flow and the incoming main flow in the high-speed compressor match well with that of its low speed model. These results validate the effectiveness of the similitude method for the tip clearance flow proposed in this paper.  相似文献   

16.
Casing treatment is an effective technique in extending stall margin of axial and centrifugal compressor.However,its impacts on the stall behaviour of mixed-flow compressor are still not completely understood until now.To conquer this issue,unsteady full-annulus simulations were conducted to investigate the stall mechanism of a mixed-flow compressor with and without axial slot casing treatment(ASCT).The circumferential propagating speed of spike inception resolved by the numerical approach is 87.1%of the shaft speed,which is identical to the test data.The numerical results confirmed that the mixed-flow compressor fell into rotating stall via spike-type with and without ASCT.The flow structure of the spike inception was investigated at 50%design rotational speed.Instantaneous static pressure traces extracted upstream of the leading edge had shown a classic spiky wave.Furthermore,it was found that with and without ASCT,the mixed-flow compressor stalled through spike with the characteristic of tip leakage spillage at leading edge and tip leakage backflow from trailing edge,which is different from a fraction of the centrifugal compressor.The resultant phenomenon provides conoborating evidence for that unlike in axial-flow compressor,the addition of ASCT does not change the stall characteristics of the mixed-flow compressor.The flow structure that induced spike inception with ASCT is similar to the case with smooth casing.In the throttling process,tip leakage flow vortex had been involved in the formation of tornado vortices,with one end at the suction side,and the other end at the casing-side.The low-pressure region relevant to the downward spike is caused by leading-edge separation vortex or tornado vortex.The high-pressure region relevant to the upward spike is induced by blockage from the passage vortex.These results not only can provide guidance for the design of casing treatment in mixed-flow compressor,but also can pave the way for the stall waring in the highly-loaded compressors of next-generation aeroengines.  相似文献   

17.
A numerical study of the effect of discrete micro tip injection on unsteady tip clearance flow pattern in an isolatedaxial compressor rotor is presented,intending to better understand the flow mechanism behind stall control meas-ures that act on tip clearance flow.Under the influence of injection the unsteadiness of self-induced tip clearanceflow could be weakened.Also the radial migration of tip clearance vortex is confined to a smaller radial extentnear the rotor tip and the trajectory of tip clearance flow is pushed more downstream,So the injection is benefi-cial to improve compressor stability and increase static pressure rise near rotor tip region.The results of injectionwith different injected mass flow rates show that for the special type of injector adopted in the paper the effect ofinjection on tip clearance flow may be different according to the relative strength between these two streams offlow.For a fixed injected mass flow rate,reducing the injector area to increase injection velocity can improve theeffect of injection on tip clearance flow and thus the compressor stability.A comparison of calculations betweensingle blade passage and multiple blade passages validates the utility of single passage computations to investi-gate the tip clearance flow for the case without injection and its interaction with injected flow for the case with tipinjection.  相似文献   

18.
In recent years, the correlation coefficient of pressure data from the same blade passage in an axial compressor unit has been used to characterize the state of flow in the blade passage. In addition, the correlation coefficient has been successfully used as an indicator for active control action using air injection. In this work, the correlation coefficient approach is extended to incorporate system identification algorithms in order to extract a mathematical model of the dynamics of the flows within a blade passage. The dynamics analyzed in this research focus on the flow streams and pressure along the rotor blades as well as on the unsteady tip leakage flow from the rotor tip gaps. The system identification results are used to construct a root locus plot for different flow coefficients, starting far away from stall to near stall conditions. As the compressor moves closer to stall, the poles of the identified models move towards the imaginary axis of the complex plane, indicating an impending instability. System frequency data is captured using the proposed correlation based system identification approach. Additionally, an oscillatory tip leakage flow is observed at a flow coefficient away from stall and how this oscillation changes as the compressor approaches stall is an interesting result of this research. Comparative research is analyzed to determine why the oscillatory flow behavior occurs at a specific sensor location within the tip region of the rotor blade.  相似文献   

19.
An experimental investigation on the unsteady tip flow field of a transonic compressor rotor has been performed.The casing-mounted high frequency response pressure transducers were arranged along both the blade chord and the blade pitch.The chord-wise ones were used to indicate both the ensemble averaged and time varying flow structure of the tip region of the rotor at different operating points under 95% design speed and 60% design speed.The pitch-wise circumferential transducers were mainly used to analyze the unsteadiness frequency of the tip leakage flow in the rotor frame at the near stall condition.The contours of casing wall pressure show that there were two clear low pressure regions in blade passages,one along the chord direction,caused by the leakage flow and the other along the tangential direction,maybe caused by the forward swept leading edge.Both low pressure regions were originated from the leading edge and formed a scissor-like flow pattern.At 95% design speed condition,the shock wave interacted with the low pressure region and made the flow field unsteady.With the mass flow reduced,the two low pressure regions gradually contracted to the leading edge and then a spike disturbance emerged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号