共查询到19条相似文献,搜索用时 46 毫秒
1.
为了对存在异常值的图像构建低维线性子空间的描述,提出用鲁棒主元分析(RPCA)的新方法进行掌纹识别。运用图像下抽样方法降低掌纹空间的维数,在低维图像上应用RPCA提取低维的投影向量,然后将训练图像和待识别图像向投影向量上投影得到鲁棒主元特征,计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库进行测试,结果表明,与主元分析(PCA)、独立元分析(ICA)和核主元分析(KPCA)相比,RPCA算法的识别率最高为99%,特征提取和匹配总时间0.032 s,满足了实时系统的要求。 相似文献
2.
提出了一种双向二维加权主元分析方法用于人脸表情特征提取,该方法从水平和垂直两个方向对图像矩阵进行降维处理,大幅降低了所提取的特征数目;且考虑到人脸不同部位包含不同的表情信息这一特点,对各个特征赋予不同的权重系数。实验证明,与已有的二维主元分析相比较,该方法不但运算速度快,且获得了更高的识别率。 相似文献
3.
核主元分析及其在人脸识别中的应用 总被引:10,自引:0,他引:10
传统的基于数据二阶统计矩的特征脸法(Eigenface)或主元分析法(PCA)是一种有效的数据特征提取方法,是基于原始特征的一种线性变换。但是,当原始数据中存在非线性属性时,用主元分析法后留下的显著成分就可能不再反映这种非线性属性。而核主元分析则是基于原始数据的高阶统计量,是一种非线性变换,在图像识别中它可以描述多个像素之间的相关性。该文采用KPCA法提取人脸特征,利用线性支持向量机设计分类器,实验结果表明,基于核主元分析方法的识别正确率明显优于基于主元分析法。 相似文献
4.
针对核主元分析(KPCA)中高斯核参数β的经验选取问题,提出了核主元分析的核参数判别选择方法。依据训练样本的类标签计算类内、类间核窗宽,在以上核窗宽中经判别选择方法确定核参数。根据判别选择核参数所确定的核矩阵,能够准确描述训练空间的结构特征。用主成分分析(PCA)对特征空间进行分解,提取主成分以实现降维和特征提取。判别核窗宽方法在分类密集区域选择较小窗宽,在分类稀疏区域选择较大窗宽。将判别核主成分分析(Dis-KPCA)应用到数据模拟实例和田纳西过程(TEP),通过与KPCA、PCA方法比较,实验结果表明,Dis-KPCA方法有效地对样本数据降维且将三个类别数据100%分开,因此,所提方法的降维精度更高。 相似文献
5.
并行主成分提取算法在信号特征提取中具有十分重要的作用, 采用加权规则将主子空间(Principal subspace, PS)提取算法转变为并行主成分提取算法是很有效的方式, 但研究加权规则对状态矩阵影响的理论分析非常少. 对加权规则影响的分析不仅可以提供加权规则下的主成分提取算法动力学的详细认知, 而且对于其他子空间跟踪算法转变为并行主成分提取算法的可实现性给出判断条件. 本文通过比较Oja的主子空间跟踪算法和加权Oja并行主成分提取算法, 通过两种算法的差异分析了加权规则对算法提取矩阵方向的影响. 首先, 针对二维输入信号, 研究了提取两个主成分时加权规则的信息准则对状态矩阵方向的作用方式. 进而, 针对大于二维输入信号的情况, 给出加权规则影响多个主成分提取方式的讨论. 最后, MATLAB仿真验证了所提出理论的有效性. 相似文献
6.
二维主元分析在人脸识别中的应用研究 总被引:12,自引:0,他引:12
结合二维主元分析(two-dimensional principal component analysis,2DPCA)的特点,将2DPCA算法用于人脸识别。它与主元分析(principal component analysis,PCA)的不同之处在于,2DPCA算法以图像矩阵为分析对象;而PCA算法以图像的一维向量为分析对象。2DPCA算法是直接利用原始图像矩阵构造图像的协方差矩阵。而PCA算法需对原始图像矩阵先降维、再将降维矩阵转换成列向量,然后构造图像的协方差矩阵。为了测试和评估2DPCA算法的性能,在ORL(olivetti research laboratory)与Yale人脸数据库上进行了实验,结果表明,2DPCA算法用于人脸识别的正确识别率高于PCA算法。同时,也显示了2DPCA算法在特征提取方面比PCA算法更有效。 相似文献
7.
主元分析(principal component analysis,PCA)是一种有效的数据分析方法,在故障诊断与状态监测方面已得到广泛应用.多元指数加权移动平均–主元分析(multivariate exponentially weighted moving average principal component analysis,MEWMA–PCA)方法用于解决PCA不能有效检出微小故障的问题.本文深入研究了MEWMA–PCA中EWMA影响主元分析进行故障检测的机制,导出了MEWMA–PCA可检出微小故障的原因.本文确定了MEWMA–PCA中遗忘因子λ、单传感器故障幅值和迟延时间三者的关系,并进行了数值仿真和火电厂磨煤机组运行状态的仿真实验.实验结果验证了MEWMA–PCA中EWMA提高PCA的监测性能的机制,并给出了根据系统实际要求来选取合适的遗忘因子值,从而在规定的时间内检出微小故障的实例. 相似文献
8.
9.
提出了一种将局部特征加权与二维主成分分析相结合的局部加权的二维主成分分析方法.引入了二维局部加权特征子空间的概念,将各类样本映射到这个局部加权特征子空间,再通过计算测试样本到加权子空间的距离进行样本的分类.使用这种方法在ORL人脸库上进行测试,结果表明,经过局部特征加权的二维主成分分析方法比普通的二维主成分分析方法具有更优的性能,并且在提高识别率的同时算法的复杂程度并没有明显增加. 相似文献
10.
针对IEC三比值法进行变压器故障诊断存在缺编码、编码边界模糊和诊断率偏低的问题,提出了采用主元分析和重构贡献图的故障诊断方法。在建立的PCA(Principal Component Analysis)统计过程模型上,构建SPE、T2统计量和重构贡献指标对变压器故障进行检测,并分析了贡献图法和重构贡献法的故障诊断性能。仿真结果表明基于主元分析和重构贡献图的故障诊断方法对数据更敏感,能够有效弥补IEC三比值法的不足,提高故障诊断正确率。 相似文献
11.
应用层次式Z缓冲区可视性算法的思想,实现了一种互连寄生电容器中屏蔽导体的快速判断算法,能准确地确定对电容值影响较小的导体,并加以消除,当用边界元法提取甚多环境导体对关键路径产生的寄生电容时,可在满足计算精度的条件下,显著地提高计算速度。 相似文献
12.
George D.C. Cavalcanti Tsang Ing Ren José Francisco Pereira 《Expert systems with applications》2013,40(12):4971-4977
This paper proposes two feature extraction techniques that minimizes the effects of distortions generated by variations in illumination, rotation and, head pose in automatic face recognition systems. The proposed techniques are Modular IMage Principal Component Analysis (MIMPCA) and weighted Modular Image Principal Component Analysis (wMIMPCA). Both techniques are based on PCA and they use the modular image decomposition to minimize local variation. Also, the covariance matrix is calculated directly from the original image matrix. This strategy generates a smaller matrix compared with traditional PCA and reduces the computational effort. wMIMPCA assumes that parts of the face are more discriminatory than others, so a Genetic Algorithm is used to obtain weights for each region in the face image. The proposed techniques are compared with Modular PCA and two-dimensional PCA using three well-known databases, showing better results. 相似文献
13.
金矿蚀变信息提取中的主成份分析 总被引:25,自引:1,他引:25
主成份分析在蚀变信息提取中是一种最基本而又非常有效的图像处理方法,在图像处理实践中,因应用目的之不同而有各自的运用技巧。在金矿蚀变信息提取中运用了全波段主成份分析、选择主成份分析、直接主成份分析与植被掩膜等方法,并在图像处理中取得了较好的应用效果 相似文献
14.
15.
针对传统批处理主成分分析工作模态参数识别中存在的矩阵奇异值或特征值分解病态问题,本文提出了一种基于自迭代主元抽取的工作模态参数识别方法。与传统批处理主成分分析通过矩阵分解一次获得所有主成分不同,该方法通过自迭代逐一抽取主成分从而实现主要贡献工作模态的逐一识别。理论分析表明,该方法的时间复杂度和空间复杂度比传统批处理主成分分析工作模态参数识别方法更低。在简支梁仿真数据集上的识别结果表明,自迭代主元抽取算法可以从平稳随机响应信号中有效地识别出线性时不变结构的主要贡献模态振型和固有频率,在响应测点和采样时间较多时其时间开销较传统方法也更小。 相似文献
16.
Shapelet序列分析为时间序列分类提供了一种快速分类的方法,但Shapelet序列抽取速度很慢,限制了它的应用范围。为了加快 Shapelet 序列的提取,提出了一种基于主成分分析的改进方法。首先运用主成分分析法(PCA)对时间序列数据集进行降维,采用降维后的数据表示原数据,然后对降维后的数据提取出最能代表类特征的Shapelet序列。实验结果表明:本方法在保证分类准确率的前提下,提高了运算速度。 相似文献
17.
针对利用核主成分分析方法处理非线性问题存在对干扰点的敏感性和特征空间中的主成分缺乏明确的物理意义等缺点,提出了一种改进的模糊KPCA(Improved Fuzzy Kernel Principal Component Analysis,IFKPCA)算法,对每个样本点进行加权处理,并利用基于距离的特征核函数和径向基核函数,把特征空间中的重构误差和输入空间的误差对应起来。用算法对2个无干扰和有干扰的数据集进行了仿真实验。同时,对药物代谢的数据进行主成分提取。结果表明,IFKPCA弱化了干扰点对样本分布的影响,表现出较好的鲁棒性;基于距离的特征核函数对样本分布具有较大的依赖性,而径向基核函数对样本分布具有良好的鲁棒性,对药物代谢的应用结果也进一步表明了IFKPCA的有效性和可行性。 相似文献
18.
针对表面肌电信号的特点,提出了一种应用非线性主分量分析(PCA)提取表面肌电信号特征的新方法.该方法在表面肌电信号滤波的基础上,采用非线性PCA方法完成数据压缩,将多路表面肌电信号转换为一维的特征数据主元,并以主元曲线的形式输出特征提取结果.本文采用基于自组织神经网络的非线性PCA对手臂尺侧腕伸肌和尺侧腕屈肌的两路表面肌电信号进行主元提取,试验结果表明,四种手部运动模式(握拳、展拳、腕外旋、腕内旋)对应的表面肌电信号利用该方法处理后,得到的主元曲线具有很好的类区分性,依据所得主元曲线的形状特征可以有效地进行手部动作类别的识别. 相似文献