首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
AIM: To observe the effect of captopril (Cap) on intracellular pH (pHi) in aortic smooth muscle cells (ASMC). METHODS: Cultured ASMC derived from rat and rabbit aortae were loaded with the fluorescent dye BCECF and pHi was determined using digital image processing method. RESULTS: The pHi of untreated SHR and WKY rats were 7.37 +/- 0.29 and 7.19 +/- 0.31, respectively. Oral Cap decreased pHi (7.11 +/- 0.26, P < 0.05) and exaggerated pHi response to angiotensin II (Ang-II, 0.1 mumol.L-1) in ASMC of SHR rats vs WKY rats (0.14 +/- 0.05 vs 0.21 +/- 0.05 pH units, P < 0.01). Cap in vitro had no effect on Ang-II induced intracellular alkalinization in ASMC of rabbits. CONCLUSION: Oral Cap inhibits Na+(-)H+ exchange activity in ASMC of SHR rats.  相似文献   

2.
OBJECTIVES: Carboxyl methylation is a reversible post-translational event which regulates the function of several cellular proteins. Because the human Na+-H+ antiporter (NHE-1) possesses a C-terminal consensus sequence for carboxyl methylation, we examined the role of protein carboxyl methylation in the regulation of intracellular pH homeostasis. DESIGN: Experiments were conducted using human platelets and N-acetyl-S-trans,trans-farnesyl-L cysteine (AFC), a specific prenylcysteine methyltransferase inhibitor. The effect of AFC on both basal intracellular pH (pHi) and on the kinetic properties of the Na+-H+ antiporter was characterized. MATERIALS AND METHODS: pHi was determined in cell suspensions using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein tetraacetoxymethyl ester, a fluorescent pH indicator. The kinetics properties of the Na+-H+ antiporter activity were determined using platelets acidified with nigericin and challenged with varying extracellular concentrations of Na+. RESULTS: AFC (20 micromol/l) decreased basal pHi significantly (7.047 +/- 0.011 versus 7.133 +/- 0.012 for control, P< 0.001). The acidification was dose-dependent and reached steady state 3 min after AFC addition. In the absence of extracellular Na+, the platelets were acidified to the same extent with AFC or with ethanol (control): 6.530 +/- 0.031 versus 6.532 +/- 0.031 (P= 0.97). However, upon addition of Na+, the platelets treated with AFC showed a significant decrease in the maximal value for initial pHi recovery compared with controls: 0.788 +/- 0.041 versus 0.983 +/- 0.047 pH/min (P< 0.02). AFC also increased the Hill coefficient (2.89 +/- 0.22 versus 2.14 +/- 0.16, P < 0.03), and tended to decrease K0.5, the [Na+] corresponding to half-maximal activation (51.3 +/- 1.8 versus 60.5 +/- 3.9 mmol/l, P = 0.06) of the antiporter. CONCLUSION: Our data indicate that inhibition of carboxyl methylation reduces basal pHi and alters the kinetic properties of the Na+-H+ antiporter in human platelets, suggesting that carboxyl methylation is implicated in the regulation of intracellular pH homeostasis.  相似文献   

3.
The proton transport processes in the upper part of the descending limb of the long-looped nephron (LDLu) from hamsters were studied using a fluorescent dye, 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF) in microperfused single nephron preparations. Intracellular pH (pHi), as assessed by the measurement of the fluorescence of BCECF trapped in the cytoplasm, was 7.23 +/- 0.05 (n = 18) under nominally HCO3--free conditions. Ouabain, when added to the bath, decreased pHi by 0.22 units. After an NH4Cl prepulse, the initial proton extrusion rate was 1.23 +/- 0.26 (n = 9) pH units/min, and was retarded in the presence of 1 mM amiloride either in the bath or in the lumen. pHi failed to recover when Na+ was eliminated from ambient solutions. These observations suggest that Na+/H+ antiporters exist both in the apical and basolateral cell membranes. By measuring tubular fluid pH (pHt) under stopped flow conditions, we examined whether the hamster LDLu has the capacity to generate and maintain a transmural H+ gradient. After the tubular outflow was obstructed, the luminal fluid was rapidly acidified, reaching a steady-state pH of 6.84 +/- 0.09 (n = 7). The steady-state pH was influenced by bath pH. Tubular fluid acidification was not observed in the absence of Na+ and was prevented by ouabain. We conclude that the hamster LDLu has the capability to generate and maintain a transmural proton gradient by proton secretion via a luminal Na+/H+ antiporter which is secondarily driven by the Na+-K+ ATPase in the basolateral membrane.  相似文献   

4.
OBJECTIVES: The aim was to determine the mechanisms, particularly bicarbonate dependent mechanisms, of intracellular pH (pHi) recovery from various acidoses in vascular smooth muscle and to explore the ATP dependency of the respective mechanisms. METHODS: Experiments were conducted in rat aortic smooth muscle cells grown in primary culture and synchronised in a non-growing state by serum deprivation. pHi was measured in cells loaded with the pH sensitive fluorescent dye, 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein (BCECF). Chloride efflux was studied by determination of the rate of efflux of 36Cl over 5 min. Cells were ATP depleted by substitution of glucose in the medium by 2-deoxyglucose. Acidoses were induced by CO2 influx and NH3 efflux techniques. RESULTS: In the absence of HCO3-, the 5-(N-ethyl-N-isopropyl) amiloride (EIPA) sensitive Na+/H+ exchange accounted for the recovery from intracellular acidosis. In the presence of HCO3- ions the response to respiratory acidosis (CO2 influx) was predominantly via activation of Na+/H+ exchange and an EIPA sensitive Na+ and HCO3- dependent mechanism. A 4-acetamido-4'-isothiocyanostilbene-2',2'-sulphonic acids (SITS) sensitive Na+ dependent Cl-/HCO3- mechanism which is also sensitive to EIPA makes a small contribution during severe intracellular acidosis. Under such conditions HCO3- dependent mechanisms contributed about 40% to the overall pHi regulating capacity of vascular smooth muscle cells. However, under conditions which deplete cellular ATP these pHi regulating mechanisms account for virtually all of theses cells' ability to regulate pHi. The inability of Na+/H+ exchange to participate in pHi recovery under these circumstances, reduces the ability of vascular smooth muscle cells to recover pHi by approximately 50-60%. Chloride efflux was approximately linear over 5 min and was increased by 36% in the presence of extracellular HCO3-. Efflux in the presence of HCO3- was inhibited similarly by both SITS and EIPA. CONCLUSIONS: At least three transporters contribute to recovery from acidosis in vascular smooth muscle: Na+/H+ exchange, an Na(+)-HCO3- cotransporter which is sensitive to EIPA, and an Na+ dependent HCO3-/Cl- exchange sensitive to both SITS and EIPA. The Na(+)-HCO3- cotransporter appears to be similar to that described in human vascular smooth muscle. When the Na+/H+ exchanger is attenuated by cellular ATP depletion, the alternative pathways, particularly the Na(+)-HCO3- cotransporter, ensure that substantial pHi regulatory capacity is maintained.  相似文献   

5.
In a series of experiments aimed to understand the signaling pathways that regulate intracellular pH (pHi) in rat mast cells, the effect of different intracellular mechanisms on the activity of the Na+/H+ exchanger was studied. After promoting an artificial acidification with sodium propionate we determined the variations on pHi rate recovery. pHi was measured with the dye 2, 7-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester. We studied the effect that the inhibition of some cellular exchangers with different drugs induced on pHi. When the Na+/H+ exchanger was inhibited in the presence of amiloride, the recovery rate constant was twofold smaller than the control value. After the recovery, the final pH was lower than the initial value when the cells were treated either with amiloride or with 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (an anionic antiport inhibitor). No effect was observed when the Na+/K+-ATPase or the Na+/Ca2+ exchanger were inhibited. The suppression of intracellular and extracellular calcium did not induced any change in pHi. The addition of thapsigargin, an activator of capacitative calcium influx, or the phorbol esther 12-O-tetradecanoylphorbol-13-acetate (PMA), a protein kinase C (PKC) activator, increased the activity of the antiporter. Both effects were abrogated by inhibition of the Na+/K+-ATPase with ouabain. The increase in cAMP levels did not affect the effect of PMA on pHi recovery, but it blocked the effect of thapsigargin. Our results indicate that rat mast cells regulate pHi by the combination of some anionic exchanger and the Na+/H+ antiporter. And also that the modulation of this exchanger is the consequence of the connection between different intracellular mechanisms, Na+/K+-ATPase-PKC-calcium, among which cAMP seems not to have a direct role.  相似文献   

6.
By keeping intracellular Na+ (aiNa) low, the Na,K-pump can prevent Ca2+ overload of cardiomyocytes. We therefore examined whether Ca2+ stimulates Na,K-pump activity in sheep cardiac Purkinje fibers. By removing Ca2+, Mg2+ and K+, the fibers depolarized and aiNa rose to 70 mM. After addition of 6 mM Mg2+ and lowering extracellular Na2+ to 29 mM, 30mM Rb+ was added, and over 10-15 min aiNa recovered to 3-7 mM. Two load-recovery cycles were conducted in 10 fibers. During one of the cycles Ca2+ (0.1-1.0 mM) was added before Rb+, causing a contracture. During recovery aiNa fell faster during Ca2+ contracture than in control cycles. Between 30 and 20 mM the rates were -10.0+/-1.6 and -5.4+/-0.6 mM/min, respectively (P<0.05). In Ca2+-exposed fibers tension fell almost parallel with aiNa. Na, K-pump reactivation caused membrane potential (Vm) to hyperpolarize transiently to -70 mV. Ca2+ did not affect membrane conductance. For a given aiNa during reactivation, Vm was more negative during Ca2+ contracture and depolarized faster (P<0.05). Intracellular pH (pHi) fell from 7.11+/-0.05 to 6.92+/-0.08 (n.s.) during control load-recovery cycles and was 6.83+/-0.14 at the end of the Ca2+ cycles. ATP content of the fibers did not change significantly through two complete load-recovery cycles, but creatine phosphate (CrP) fell by about 40%. By fitting the data to a model incorporating the Hill equation we show that during Ca2+-induced contracture maximum Na,K-pump rate (Vmax) was increased by about 40% and aiNa that causes 50% pump activation (k0.5) was lowered from 21. 2+/-1.6 to 15.5+/-1.4 mM.  相似文献   

7.
BACKGROUND: We compared the effects of the nitric oxide donor sodium nitroprusside (SNP) on intracellular pH (pHi), intracellular calcium concentration ([Ca2+]i) transients, and cell contraction in hypertrophied adult ventricular myocytes from aortic-banded rats and age-matched controls. METHODS AND RESULTS: pHi was measured in individual myocytes with SNARF-1, and [Ca2+]i transients were measured with indo 1 simultaneously with cell motion. Experiments were performed at 37 degrees C in myocytes paced at 0.5 Hz in HEPES-buffered solution (extracellular pH = 7.40). At baseline, calibrated pHi, diastolic and systolic [Ca2+]i values, and the amplitude of cell contraction were similar in hypertrophied and control myocytes. Exposure of the control myocytes to 10(-6) mol/L SNP caused a decrease in the amplitude of cell contraction (72 +/- 7% of baseline, P < .05) that was associated with a decrease in pHi (-0.10 +/- 0.03 U, P < .05) with no change in peak systolic [Ca2+]i. In contrast, in the hypertrophied myocytes exposure to SNP did not decrease the amplitude of cell contraction or cause intracellular acidification (-0.01 +/- 0.01 U, NS). The cGMP analogue 8-bromo-cGMP depressed cell shortening and pHi in the control myocytes but failed to modify cell contraction or pHi in the hypertrophied cells. To examine the effects of SNP on Na(+)-H+ exchange during recovery from intracellular acidosis, cells were exposed to a pulse and washout of NH4Cl. SNP significantly depressed the rate of recovery from intracellular acidosis in the control cells compared with the rate in hypertrophied cells. CONCLUSIONS: SNP and 8-bromo-cGMP cause a negative inotropic effect and depress the rate of recovery from intracellular acidification that is mediated by Na(+)-H+ exchange in normal adult rat myocytes. In contrast, SNP and 8-bromo-cGMP do not modify cell contraction or pHi in hypertrophied myocytes.  相似文献   

8.
Cells within solid tumors are known to exist in a microenvironment that may be acidic and depend on membrane-based mechanisms (Na+/H+ antiport and Na+-dependent Cl-/HCO3- exchanger) that regulate intracellular pH (pHi). We have used the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl) 5 (and 6)-carboxyfluorescein and flow cytometry to study the distribution of pHi and the activity of these pHi-regulating mechanisms among populations of murine mammary sarcoma (EMT6), human breast cancer (MCF-7), and Chinese hamster ovary cells exposed to different levels of extracellular pH (pHe). Cells were exposed to Na+ buffer in the presence or absence of HCO3- and of 5-(N-ethyl-N-isopropyl)-amiloride (a potent inhibitor of the Na+/H+ antiport) to determine the relative importance of each exchanger in the regulation of pHi. Our results indicate that: (a) the distribution of pHi at any value of pHe is broader than can be accounted for by machine noise; (b) cells maintain levels of pHi that are higher than pHe under acidic conditions; (c) the distribution of pHi is narrower when the Na+-dependent Cl-/HCO3- exchanger is active; and (d) populations that are derived from selected cells with values of pHi at lower and higher ends of the pHi distribution generate pHi distributions that are similar to those of controls, suggesting a stochastic variation in the activity of membrane-based mechanisms that regulate pHi. Our data suggest that the Na+-dependent Cl-/HCO3- exchanger is the dominant mechanism for regulation of pHi under moderately acidic conditions such as may occur in the microenvironment of solid tumors.  相似文献   

9.
We have tested the hypothesis that thyroid state may influence both the flow of cellular Ca2+ and the myofilament response to Ca2+ by effects on intracellular pH (pHi) and Na+ (Nai+). Single cardiac myocytes isolated from hypothyroid, euthyroid and hyperthyroid animals were loaded with fura-2/AM (Cai2+ probe), BCECF/AM (pHi probe) or SBFI/AM (Nai+ probe). Compared with hypothyroid animals, myocytes isolated from hyperthyroid rat hearts demonstrated a significant: (1) increase in extent of shortening; (2) decrease in the time to peak contraction; (3) increase in the peak amplitude of the fura-2 fluorescence ratio; (4) decrease in pHi (DeltapHi=0. 19+/-0.05); and (5) increase in Nai+ (DeltaNai+=2.88+/-0.55 mM). We have also compared pHi in Langendorff perfused hypo- and hyperthyroid rat hearts using NMR. We have found that hyperthyroid hearts are 0.15+/-0.03 pH units more acidic than hypothyroid hearts. Analysis of mRNA levels demonstrated that hyperthyroidism increased expression of both the Na+/Ca2+ exchanger and Na+/H+ antiporter, and decreased expression of Na+ channel mRNAs. These changes appear partially responsible for the observed changes in Nai+ and pHi. Our results provide the first evidence that changes in cardiac contractility associated with altered thyroid state not only involve effects on Ca2+, but may also involve changes in the response of the myofilaments to Cai2+mediated by altered pHi and Nai+.  相似文献   

10.
We previously demonstrated that the progesterone-(P) initiated human sperm acrosome reaction (AR) was dependent on the presence of extracellular Na+ (Na(-)0). Moreover, Na(-)0 depletion resulted in a decreased cytosolic pH (pHi), suggesting involvement of a Na(+)-dependent pHi regulatory mechanism during the P-initiated AR. We now report that the decreased pHi resulting from Na(+)0 depletion is reversible and mediated by a Na+/H+ exchange (NHE) mechanism. To determine the role of an NHE in the regulation of pHi, capacitated spermatozoa were incubated in Na(+)-deficient, bicarbonate/CO2-buffered (ONaB) medium for 15-30 min, which resulted in an intracellular acidification as previously reported. These spermatozoa were then transferred to Na(+)-containing, bicarbonate/CO2-buffered (NaB) medium; Na(+)-containing, Hepes-buffered (NaH) medium; or maintained in the ONaB medium. Included in the NaH medium was the NHE inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA). The steady-state pHi was then determined by spectrofluorometric measurement of bis(carboxyethyl)5(6)-carboxyfluoroscein (BCECF) fluorescence. EIPA (0.1 microM) significantly (P < 0.05) inhibited the pHi recovery produced by NaH medium. Moreover, the pHi in NaH medium was not significantly (P < 0.05) different than NaB medium. These results indicate that a Na(+)-dependent, bicarbonate-independent pHi regulatory mechanism, with a pharmacological characteristic consistent with an NHE, is present in capacitated spermatozoa. In support of the involvement of a sperm NHE, we also demonstrated specific immunoreactivity for a 100 kDa porcine sperm protein using an NHE-1 specific monoclonal antibody. Interestingly, no significant (P = 0.79) effect was seen on the P-initiated AR when EIPA was included in either the NaH or NaB medium. While these findings suggest that inhibition of NHE-dependent pHi regulation in capacitated spermatozoa is not sufficient to block initiation of the AR by P, they do not preclude the possibility that an NHE mediates the regulation of capacitation or sperm motility.  相似文献   

11.
The effect of secondary, tertiary and quaternary methyl- and ethylamines on intracellular pH (pHi) and intracellular Ca2+ activity ([Ca2+]i) of HT29 cells was investigated microspectrofluorimetrically using pH- and Ca2+- sensitive fluorescent indicators, [i.e. 2', 7'-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and fura-2 respectively]. Membrane voltage (Vm) was studied by the patch-clamp technique. Secondary and tertiary amines led to a rapid and stable concentration-dependent alkalinization which was independent of their pKa value. Trimethylamine (20 mmol/l) increased pHi by 0.78 +/- 0.03 pH units (n = 9) and pH remained stable for the application time. Removal led to an undershoot of pHi and a slow and incomplete recovery: pHi stayed 0.26 +/- 0.06 pH units more acid than the resting value. The quaternary amines, tetramethyl- and tetraethylamine were without influence on pHi. All tested secondary and tertiary amines (dimethyl-, diethyl-, trimethyl-, and triethyl-amine) induced a [Ca2+]i transient which reached a peak value within 10-25 s and then slowly declined to a [Ca2+]i plateau. The initial Delta[Ca2+]i induced by trimethylamine (20 mmol/l) was 160 +/- 15 nmol/l (n = 17). The [Ca2+]i peak was independent of the Ca2+ activity in the bath solution, but the [Ca2+]i plateau was significantly lower under Ca2+-free conditions and could be immediately interrupted by application of CO2 (10%; n = 6), a manoeuvre to acidify pHi in HT29 cells. Emptying of the carbachol- or neurotensin-sensitive intracellular Ca2+ stores completely abolished this [Ca2+]i transient. Tetramethylamine led to higher [Ca2+]i changes than the other amines tested and only this transient could be completely blocked by atropine (10(-6) mol/l). Trimethylamine (20 mmol/l) hyperpolarized Vm by 22.5 +/- 3.7 mV (n = 16) and increased the whole-cell conductance by 2.3 +/- 0.5 nS (n = 16). We conclude that secondary and tertiary amines induce stable alkaline pHi changes, release Ca2+ from intracellular, inositol-1,4, 5-trisphosphate-sensitive Ca2+ stores and increase Ca2+ influx into HT29 cells. The latter may be related to both the store depletion and the hyperpolarization.  相似文献   

12.
Intracellular pH (pHi) regulates several aspects of mammalian sperm function, although the transport mechanisms that control pHi in these cells are not understood. The pHi of mouse cauda epididymal sperm was determined from the fluorescence excitation ratio of 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein and calibrated with nigericin and elevated external [K+]. Two acid efflux mechanisms were identified following imposition of acid loads. One pathway has many anticipated characteristics of the somatic Na(+)-dependent Cl(-)-HCO3- exchanger, although sperm and somatic mechanisms can be distinguished by their ion selectivity and inhibitor sensitivity. Sperm may have an isoform of this exchange pathway with novel functional characteristics. The second acid-export pathway does not require extracellular anions or cations and is inhibited by arylaminobenzoates (flufenamic acid, diphenylamine-2-carboxylate). Mouse sperm also recover spontaneously from intracellular alkalinization. Recovery rates in N-methyl-D-glucamine+ Cl- or in 0.25 M sucrose are not significantly different from that in a complex culture medium. Thus, recovery from alkalinization does not utilize specific, ion-dependent transport mechanisms. Other widely distributed acid-efflux mechanisms, such as the Na(+)-H+ antiport pathway and the Na(+)-independent Cl(-)-HCO3- exchanger are not major regulators of mouse sperm pHi. Sperm capacitation results in pHi increases (from 6.54 +/- 0.08 to 6.73 +/- 0.09) that require a functional Na(+)-, Cl(-)-, and HCO3(-)-dependent acid-efflux pathway. Inhibition of this regulatory mechanism attenuates alkaline shifts in pHi during capacitation as well as the ability of sperm to produce a secretory response to zona pellucida agonists. These data suggest that one aspect of mouse sperm capacitation is the selective activation of one major pHi regulator.  相似文献   

13.
Intraerythrocytic malaria parasites produce vast amounts of lactic acid through glycolysis. While the egress of lactate is very rapid, the mode of extrusion of H+ is not known. The possible involvement of a Na+/H+ antiport in the extrusion of protons across the plasma membrane of Plasmodium falciparum has been investigated by using the fluorescent pH probe 6-carboxyfluorescein. The resting cytosolic pH was 7.27 +/- 0.1 in ring stage parasites and 7.31 +/- 0.12 in trophozoites. Spontaneous acidification of parasite cytosol was observed in Na(+)-free medium and realkalinization occurred upon addition of Na+ to the medium in a concentration-dependent manner, with no apparent saturation. The rate of H(+)-efflux at the ring stage was higher than that at the trophozoite stage due to the larger surface/volume ratio of the young parasite stage. Na(+)-dependent H(+)-efflux was: 1) inhibited by the Na+/H+ inhibitors amiloride and 5-(N-ethyl-N-isopropyl) amiloride (EIPA), though at relatively high concentrations; 2) augmented with rising pH6 (pHi = 6.2, [Na+]o = 30 mM); and 3) decreased with increasing pHi (pHo = 7.4; [Na+]o = 30 mM). The pHi and the pHo dependencies of H(+)-efflux were almost identical at all parasite stages. Only at pHi > 7.6 efflux was totally obliterated. The target of this inhibitory effect is probably other than the antiport. Results indicate that H(+)-egress is mediated by a Na+/H+ antiport which is regulated by host and parasite pH and by the host cytosol sodium concentration. The proton transport capacity of the antiport can easily cope with all the protons of lactic acid produced by parasite's glycolysis.  相似文献   

14.
Regulation of intracellular pH (pHi) was studied in cultured bovine aortic endothelial cells, an important cell system for cardiovascular research. Suspended cells were acidified by the NH4Cl prepulse technique as well as by exposure to CO2/HCO3-. Subsequent rates of pHi recovery were monitored using the fluorescent dye 2',7'-bis(2-carboxyethyl)-5-(6)-carboxyfluorescein (BCECF). In HCO3(-)-free solutions, an EIPA-sensitive, Na+-dependent mechanism fully accounted for realkalinization, namely the Na+/H+ exchanger (NHE). In the presence of HCO3-, an additional acid efflux mechanism was found. This one was dependent on Na+ and intracellular Cl-, EIPA-insensitive but DIDS-sensitive, and therefore represented a Na+-dependent Cl-/HCO3- exchanger (NCBE). In summary, two acid-extruding mechanisms were identified in bovine aortic endothelial cells: NHE and NCBE.  相似文献   

15.
Postischemic endothelial dysfunction may occur as a result of the effects of endogenous oxidants like hydrogen peroxide. Since endothelium-dependent vasodilator function may be affected by pHi, the effect of hydrogen peroxide on endothelial pHi was examined. Hydrogen peroxide (100 micromol/L for 10 minutes) decreased pHi from 7.24+/-0.01 to 7.02+/-0.02 and inhibited recovery from an ammonium chloride-induced intracellular acid load in carboxy SNARF 1 (c-SNARF 1)-loaded human aortic endothelial cells in bicarbonate-free solution. Prior inhibition of Na+/H+ exchange with 5-(N-ethyl-N-isopropyl)amiloride (10 micromol/L), by removal of extracellular Na+, or by glycolytic inhibition with iodoacetic acid blocked the subsequent effect of hydrogen peroxide on pHi. A 2-minute exposure to 100 micromol/L H2O2 decreased intracellular ATP levels by approximately 40%; this was prevented by 3-aminobenzamide and nicotinamide (1 mmol/L each), inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. Both 3-aminobenzamide and nicotinamide significantly inhibited the hydrogen peroxide-induced intracellular acidification and the effect of hydrogen peroxide on recovery from an intracellular acid load. Hydrogen peroxide decreases pHi in human endothelial cells by inhibiting Na+/H+ exchange. This appears to be mediated by activation of the DNA repair enzyme poly(ADP-ribose) polymerase and subsequent depletion of intracellular ATP. Since a decrease in pHi in this range may alter the activity of NO synthase or affect the synthesis of vasodilator prostaglandins, the effect of hydrogen peroxide on the endothelial Na+/H+ exchanger may be important in the pathogenesis of postischemic endothelial dysfunction.  相似文献   

16.
Ionic fluxes that contribute to changes in membrane potential and variations of pHi (intracellular pH) are not well known in mast cells, although they can be important in the stimulus-secretion coupling. Cellular volume regulation implies changes in the concentration of intracellular ions, such as sodium and potassium and volume changes can be imposed varying the tonicity of the medium. We studied the physiology of sodium and examined the effect of ouabain on [22Na] entry in mast cells in isotonic and hypertonic media. We also recorded changes in membrane potential and pHi using the fluorescent dyes bis-oxonol (Bis-(1,3-diethylthiobarbituric acid) trimethineoxonol) a n d BCECF (2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester) in hypertonic conditions. The results show that [22Na] influx increases four fold in hypertonic solutions and it is mediated mainly by an amiloride-sensitive Na+/H+ exchanger. This transporter is involved in the shrinkage-activated cellular alkalinization and the pHi recovery is accelerated by inhibition of the Na+/K+ ATPase with ouabain in the absence of extracellular calcium. Under hypertonic conditions 22Na influx is apparently not increased by ouabain, while the Na+/K+ ATPase inhibitor clearly increases [22Na] uptake and also induces membrane depolarization in isotonic conditions. All together, these findings suggest that Na+/K+ ATPase is partially inhibited in hypertonic conditions.  相似文献   

17.
To determine whether skeletal muscle hydrogen ion mediates ventilatory drive in humans during exercise, 12 healthy subjects performed three bouts of isotonic submaximal quadriceps exercise on each of 2 days in a 1.5-T magnet for 31P-magnetic resonance spectroscopy (31P-MRS). Bilateral lower extremity positive pressure cuffs were inflated to 45 Torr during exercise (BLPPex) or recovery (BLPPrec) in a randomized order to accentuate a muscle chemoreflex. Simultaneous measurements were made of breath-by-breath expired gases and minute ventilation, arterialized venous blood, and by 31P-MRS of the vastus medialis, acquired from the average of 12 radio-frequency pulses at a repetition time of 2.5 s. With BLPPex, end-exercise minute ventilation was higher (53.3 +/- 3.8 vs. 37.3 +/- 2.2 l/min; P < 0.0001), arterialized PCO2 lower (33 +/- 1 vs. 36 +/- 1 Torr; P = 0.0009), and quadriceps intracellular pH (pHi) more acid (6.44 +/- 0.07 vs. 6.62 +/- 0.07; P = 0.004), compared with BLPPrec. Blood lactate was modestly increased with BLPPex but without a change in arterialized pH. For each subject, pHi was linearly related to minute ventilation during exercise but not to arterialized pH. These data suggest that skeletal muscle hydrogen ion contributes to the exercise ventilatory response.  相似文献   

18.
In most cell types, including resting skeletal muscle fibers, internal pH (pHi) is kept constant at a relatively alkaline level. The high pHi is obtained in spite of a chronic acid load resulting from cellular metabolism and passive influx of protons driven by electrochemical forces. Regulation of pHi depends on continuous activity of membrane transport systems that mediate an outflux of H+ (or bicarbonate influx), whereby the acid load is counterbalanced. The transporters involved in muscle pH regulation at rest are the Na+/H+ exchange system as well as the Na+-dependent and Na+-independent Cl- bicarbonate transport systems. The Na+/H+ exchanger seems to be active at resting pHi levels in skeletal muscle. Therefore, pH homeostasis in skeletal muscle most likely involves an equilibrium between counter-directed H+ fluxes. A minor fraction of H+ release during intense exercise is mediated by the Na+/H+ exchanger. The capacity of this system is increased with training and hypoxia in rat skeletal muscle. The dominant acid extruding system associated with intense exercise is the lactate/H+ co-transporter. It has been demonstrated that the capacity of the lactate/H+ co-transporter of rat skeletal muscle is upregulated with training and chronic electrical stimulation, and that it is reduced upon denervation and hindlimb unweighting. Moreover, athletes can have an elevated lactate/H+ co-transport capacity, whereas the thigh muscle of spinal cord-injured individuals has a lower transport capacity than the one of healthy untrained subjects. Thus, it appears that the capacity of the lactate/H+ transporter is affected by the level of muscle activity in both rats and humans. In addition, the rate of H+ release from muscle may also be influenced by capillarization and local blood flow. Finally the resulting pH displacement during acid accumulation is determined by the cellular buffer capacity, which may also undergo adaptive changes.  相似文献   

19.
BACKGROUND: Primary non-function of liver allografts is related to preservation time, during which hypoxia leads to intracellular accumulation of acid. Preservation-induced failure of hepatocellular pH regulation may play a role in the pathogenesis of primary graft non-function. METHODS: Using cultured/suspended rat hepatocytes and fluorimetric determination of intracellular pH, we determined whether preservation in University of Wisconsin solution (4 degrees C) impairs hepatocellular defence mechanisms against acidosis. RESULTS: In non-preserved, 24-h-preserved and 48-h-preserved hepatocytes acidified to pH 6.7-6.8, initial Na+/H+ antiport-mediated H+ fluxes averaged 12 +/- 5, 9 +/- 5 and 12 +/- 5 nmol microL-1 min-1 and initial Na+/HCO3- symport-mediated HCO3- fluxes 7 +/- 2, 7 +/- 3 and 6 +/- 2 nmol microL-1 min respectively (P = NS). Preservation did not affect the inverse relationship between Na+/H+ antiport activity and intracellular pH. Thus, hepatocellular defence against intracellular acidosis is maintained during up to 48 h in University of Wisconsin solution. CONCLUSION: Altered pHi homeostasis is unlikely to play a role in the pathogenesis of primary non-function of liver allografts.  相似文献   

20.
The response of the intracellular pH (pHi, measured with BCECF) of the caecal and distal colonic epithelium of guinea pig and of monolayers of HT29 clone 19a cells on the addition of short-chain fatty acids (SCFA) was assessed. Addition of SCFA to the luminal side of these cells had no major effect on pHi, independent of whether the apical Na+/H+ exchange or the apical K+/H+ ATPase was inhibited or not. Addition of SCFA to the serosal side, on the other hand, caused a marked decrease of pHi, followed by an effective regulation back to basal values, and after removal of the acid, the cells became alkalinized. Intracellular pH is mainly regulated by mechanisms in the basolateral membrane. The basolateral Na+/H+ exchanger and the Cl-/HCO3- exchanger were mainly responsible for pHi regulation. Inhibition studies are consistent with a NHE-1 type Na+/H+ exchanger in the basolateral membranes. The apical Na+/H+ exchanger of caecal enterocytes and in HT29 cells, and the apical K+/H+ ATPase in the apical membrane of the distal colon have no or little influence on pHi regulation. The comparison shows that the HT29-19a cell line is an adequate model for studying pHi phenomena of hind gut epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号