首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The RusA protein of Escherichia coli is an endonuclease that resolves Holliday intermediates in recombination and DNA repair. Analysis of its subunit structure revealed that the native protein is a dimer. Its resolution activity was investigated using synthetic X-junctions with homologous cores. Resolution occurs by dual strand incision predominantly 5' of CC dinucleotides located symmetrically. A junction lacking homology is not resolved. The efficiency of resolution is related inversely to the number of base pairs in the homologous core, which suggests that branch migration is rate-limiting. Inhibition of resolution at high ratios of protein to DNA suggests that binding of RusA may immobilize the junction point at non-cleavable sites. Resolution is stimulated by alkaline pH and by Mn2+. The protein is unstable in the absence of substrate DNA and loses approximately 80% of its activity within 1 min under standard reaction conditions. DNA binding stabilizes the activity. Junction resolution is inhibited in the presence of RuvA. This observation probably explains why RusA is unable to promote efficient recombination and DNA repair in ruvA+ strains unless it is expressed at a high level.  相似文献   

2.
The Escherichia coli RuvC protein endonucleolytically resolves Holliday junctions, which are formed as intermediates during genetic recombination and recombination repair. Previous studies using model Holliday junctions suggested that a certain size of central core of homology and a specific sequence in the junction were required for efficient cleavage by RuvC, although not for binding. To determine the minimum length of sequence homology required for RuvC cleavage, we made a series of synthetic Holliday junctions with various lengths of homologous sequence in the core region. It was demonstrated that a monomobile junction possessing only 2 base pairs of the homology core was efficiently cleaved by RuvC. To study the sequence specificity for cleavage, we made 16 bimobile junctions, which differed only in the homologous core sequence. Among them, 6 junctions were efficiently cleaved. Cleavage occurred by introduction of nicks symmetrically at the 3'-side of thymine in all cases. However, the nucleotide bases at the 3'-side of the thymines were not always identical between the two strands nicked. These results suggest that RuvC recognizes mainly topological symmetry of the Holliday junction but not the sequence symmetry per se, that the thymine residue at the cleavage site plays an important role for RuvC-mediated resolution, and that a long homologous core sequence is not essential for cleavage.  相似文献   

3.
The objective of this article is to describe the creation and operation of a multidisciplinary group to examine the Oklahoma City (OKC) bombing. The OKC bombing presented an opportunity to study a major disaster within 2 days of the incident. The Disaster Health Studies Group (DHSG) was created to facilitate this effort. The creation, organization, and operation of the DHSG is outlined. In addition the mission statement, participants, communications, political empowerment, data preservation and collection, data ownership, patient rights, threats to the DHSG, media interactions, funding, the institutional review board process, and results reporting will be detailed. The 22 projects of the DHSG are listed. In conclusion, four main findings are examined: 1) A multidisciplinary disaster study group is feasible and can be rapidly organized; 2) certain organizations and institutions form a core group for facilitation of the research effort; 3) specific issues must be addressed in order for the group to succeed; and 4) the group leader should have disaster expertise and be committed to the multidisciplinary process.  相似文献   

4.
We have determined the X-ray crystal structures of two DNA Holliday junctions (HJs) bound by Cre recombinase. The HJ is a four-way branched structure that occurs as an intermediate in genetic recombination pathways, including site-specific recombination by the lambda-integrase family. Cre recombinase is an integrase family member that recombines 34 bp loxP sites in the absence of accessory proteins or auxiliary DNA sequences. The 2.7 A structure of Cre recombinase bound to an immobile HJ and the 2.5 A structure of Cre recombinase bound to a symmetric, nicked HJ reveal a nearly planar, twofold-symmetric DNA intermediate that shares features with both the stacked-X and the square conformations of the HJ that exist in the unbound state. The structures support a protein-mediated crossover isomerization of the junction that acts as the switch responsible for activation and deactivation of recombinase active sites. In this model, a subtle isomerization of the Cre recombinase-HJ quaternary structure dictates which strands are cleaved during resolution of the junction via a mechanism that involves neither branch migration nor helical restacking.  相似文献   

5.
Homologous recombination is a fundamental cellular process that shapes and reshapes the genomes of all organisms and promotes repair of damaged DNA. A key step in this process is the resolution of Holliday junctions formed by homologous DNA pairing and strand exchange. In Escherichia coli , a Holliday junction is processed into recombinant products by the concerted activities of the RuvA and RuvB proteins, which together drive branch migration, and RuvC endonuclease, which resolves the structure. In the absence of RuvABC, recombination can be promoted by increasing the expression of the RusA endonuclease, a Holliday junction resolvase encoded by a cryptic prophage gene. Here, we describe the DNA binding properties of RusA. We found that RusA was highly selective for branched molecules and formed complexes with these structures even in the presence of a large excess of linear duplex DNA. However, it does bind weakly to linear duplex DNA. Under conditions where there was no detectable binding to duplex DNA, RusA formed a highly structured complex with a synthetic Holliday junction that was remarkably stable and insensitive to divalent metal ions. The duplex arms were found to adopt a specific alignment within this complex that approximated to a tetrahedral conformation of the junction.  相似文献   

6.
Fetal DNA has been detected in maternal plasma during pregnancy. We investigated the clearance of circulating fetal DNA after delivery, using quantitative PCR analysis of the sex-determining region Y gene as a marker for male fetuses. We analyzed plasma samples from 12 women 1-42 d after delivery of male babies and found that circulating fetal DNA was undetectable by day 1 after delivery. To obtain a higher time-resolution picture of fetal DNA clearance, we performed serial sampling of eight women, which indicated that most women (seven) had undetectable levels of circulating fetal DNA by 2 h postpartum. The mean half-life for circulating fetal DNA was 16.3 min (range 4-30 min). Plasma nucleases were found to account for only part of the clearance of plasma fetal DNA. The rapid turnover of circulating DNA suggests that plasma DNA analysis may be less susceptible to false-positive results, which result from carryover from previous pregnancies, than is the detection of fetal cells in maternal blood; also, rapid turnover may be useful for the monitoring of feto-maternal events with rapid dynamics. These results also may have implications for the study of other types of nonhost DNA in plasma, such as circulating tumor-derived and graft-derived DNA in oncology and transplant patients, respectively.  相似文献   

7.
E. coli RuvC protein resolves Holliday junctions during genetic recombination and postreplication repair. Using small synthetic junctions, we show that junction recognition is structure-specific and occurs in the absence of metal cofactors. In the presence of Mg2+, Holliday junctions are resolved by the introduction of symmetrically related nicks at the 3' side of thymine residues. The nicked duplex products are repaired by the action of DNA ligase. Within the RuvC-Holliday junction complex, the DNA is distorted such that 2 of the 4 strands become hypersensitive to hydroxyl radical attack. The ionic requirements of binding, hydroxyl radical sensitivity, and strand cleavage indicate three distinct steps in the mechanism of RuvC-mediated Holliday junction resolution: structure-specific recognition, DNA distortion, and sequence-dependent cleavage.  相似文献   

8.
Specificity of gap junction formation produces communication compartments, groups of cells joined to each other by gap junctions (homologous communication) but more rarely to cells in adjacent compartments (heterologous communication). Specificity of junction formation can be studied in mixed cultures of different cell types. In these model systems, compartmentation is often associated with sorting out, a process that produces separate domains of the different cells. The borders of the physically distinct domains correlate with the functional boundaries of the communication compartments. Compartments have also been observed in vivo where they are believed to play a role in separating groups of cells following different differentiation pathways. Two classes of cell surface molecule, connexins and cell adhesion molecules, are candidates for a role in the control of specificity. A representative of each class appears to be necessary for gap junction formation and both are expressed in a tissue specific manner. We have shown that mixed cultures of rat epithelial (BRL) cells and rat (BICR) fibroblasts show specificity, form communication compartments and sort out. Both cell types express the same connexin (connexin 43) but different cell adhesion molecules (BRL, P-cadherin and 125-kDa N-cadherin; BICR, 140-kDa N-cadherin). Transfection of both cell types with E-cadherin results in a 10-fold increase in heterologous communication. These data suggest that E-cadherin plays a role in the control of specificity of gap junction formation.  相似文献   

9.
CCE1 is a DNA junction-resolving enzyme involved in the resolution of recombining mitochondrial DNA in Saccharomyces cerevisiae. The CCE1 gene was cloned by PCR, and the expressed protein purified to homogeneity. CCE1 was found to bind to four-way DNA junctions, with a strong structural selectivity. The enzyme binds DNA junctions as a dimer, with slow subunit exchange occurring in free solution. While CCE1 binds equally to synthetic four-way DNA junctions of any sequence, it exhibits pronounced sequence-selectivity in cleavage. Both fixed junctions and those capable of branch migration can be cleaved, with a preference for cleavage at the sequence 5'CT/. Cleavage of junctions tethered to adopt specific stacking isomers demonstrated that the target sequences are cleaved fivefold faster when located on a continuous strand compared to an exchanging strand.  相似文献   

10.
L1 elements are polyA retrotransposons which inhabit the human genome. Recent work has defined an endonuclease (L1 EN) encoded by the L1 element required for retrotransposition. We report the sequence specificity of this nicking endonuclease and the physical basis of its DNA recognition. L1 endonuclease is specific for the unusual DNA structural features found at the TpA junction of 5'(dTn-dAn) x 5'(dTn-dAn) tracts. Within the context of this sequence, substitutions which generate a pyrimidine-purine junction are tolerated, whereas purine-pyrimidine junctions greatly reduce or eliminate nicking activity. The A-tract conformation of the DNA substrate 5' of the nicked site is required for L1 EN nicking. Chemical or physical unwinding of the DNA helix enhances L1 endonuclease activity, while disruption of the adenine mobility associated with TpA junctions reduces it. Akin to the protein-DNA interactions of DNase I, L1 endonuclease DNA recognition is likely mediated by minor groove interactions. Unlike several of its homologues, however, L1 EN exhibits no AP endonuclease activity. Finally, we speculate on the implications of the specificity of the L1 endonuclease for the parasitic relationship between retroelements and the human genome.  相似文献   

11.
Restriction endonucleases such as EcoRI bind and cleave DNA with great specificity and represent a paradigm for protein-DNA interactions and molecular recognition. Using osmotic pressure to induce water release, we demonstrate the participation of bound waters in the sequence discrimination of substrate DNA by EcoRI. Changes in solvation can play a critical role in directing sequence-specific DNA binding by EcoRI and are also crucial in assisting site discrimination during catalysis. By measuring the volume change for complex formation, we show that at the cognate sequence (GAATTC) EcoRI binding releases about 70 fewer water molecules than binding at an alternate DNA sequence (TAATTC), which differs by a single base pair. EcoRI complexation with nonspecific DNA releases substantially less water than either of these specific complexes. In cognate substrates (GAATTC) kcat decreases as osmotic pressure is increased, indicating the binding of about 30 water molecules accompanies the cleavage reaction. For the alternate substrate (TAATTC), release of about 40 water molecules accompanies the reaction, indicated by a dramatic acceleration of the rate when osmotic pressure is raised. These large differences in solvation effects demonstrate that water molecules can be key players in the molecular recognition process during both association and catalytic phases of the EcoRI reaction, acting to change the specificity of the enzyme. For both the protein-DNA complex and the transition state, there may be substantial conformational differences between cognate and alternate sites, accompanied by significant alterations in hydration and solvent accessibility.  相似文献   

12.
The translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes protein splicing, in which the intervening region is autocatalytically excised and the franking regions are ligated. The splicing reaction is catalyzed essentially by the in-frame insert, VMA1-derived endonuclease (VDE), which is a site-specific endonuclease to mediate gene homing. Previous mutational analysis of the splicing reaction has been concentrated extensively upon the splice junctions. However, it still remains unknown which amino acid residues are crucial for the splicing reaction within the entire region of VDE and its neighboring elements. In this work, a polymerase chain reaction-based random mutagenesis strategy was used to identify such residues throughout the overall intervening sequence of the VMA1 gene. Splicing-defective mutant proteins were initially screened using a bacterial expression system and then analyzed further in yeast cells. Mutations were mapped at the N- and C-terminal splice junctions and around the N-terminal one-third of VDE. We identified four potent mutants that yielded aberrant products with molecular masses of 200, 90, and 80 kDa. We suggest that the conserved His362, newly identified as the essential residue for the splicing reaction, contributes to the first cleavage at the N-terminal junction, whereas His736 assists the second cleavage by Asn cyclization at the C-terminal junction. Mutations in these regions did not appear to destroy the endonuclease activity of VDE.  相似文献   

13.
The crystal structure of the type II restriction endonuclease BglI bound to DNA containing its specific recognition sequence has been determined at 2.2 A resolution. This is the first structure of a restriction endonuclease that recognizes and cleaves an interrupted DNA sequence, producing 3' overhanging ends. BglI is a homodimer that binds its specific DNA sequence with the minor groove facing the protein. Parts of the enzyme reach into both the major and minor grooves to contact the edges of the bases within the recognition half-sites. The arrangement of active site residues is strikingly similar to other restriction endonucleases, but the co-ordination of two calcium ions at the active site gives new insight into the catalytic mechanism. Surprisingly, the core of a BglI subunit displays a striking similarity to subunits of EcoRV and PvuII, but the dimer structure is dramatically different. The BglI-DNA complex demonstrates, for the first time, that a conserved subunit fold can dimerize in more than one way, resulting in different DNA cleavage patterns.  相似文献   

14.
15.
When searching on Scots pines, females of the aphid parasitoid Pauesia silvestris responded to differences in mortality risks, host distribution and host quality by changing foraging tactics. They foraged more successfully (i.e. they laid more eggs per unit time) on the pine aphid Cinara pini than on Cinara pineaTherefore, the former species was considered to be of higher quality. However, P. silvestris suffered from a high mortality (19.5%) from ant aggression when foraging for C. piniwhile mortality was zero on pines with C. pineaAll females that were killed were foraging on the bark, while females searching on needles were safe from ant attacks. When searching for C. pineaP. silvestris spent significantly more time on needles if the aphid colonies were ant-attended. On pines with C. piniin contrast, females spent more time on bark in ant-attended colonies. The high adult mortality risk on bark was counterbalanced by a significantly higher foraging success in ant-attended colonies.  相似文献   

16.
17.
18.
Various in vitro studies have shown that delta-9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, has a variety of inhibitory effects on immune functions including effects on macrophages. The present studies have examined the mechanism of THC's effects on tumor necrosis factor alpha (TNF-alpha), a major macrophage-produced cytokine and an important mediator involved in cytokine networks and in host defense mechanisms. Exposure of macrophages to medium containing THC has resulted in low levels of soluble TNF-alpha protein and reduced TNF-alpha bioactivity in the culture supernatant. However, THC did not inhibit the levels of LPS-induced TNF-alpha mRNA and intracellular TNF-alpha precursor protein, had only a weak effect on expression of membrane-bound TNF-alpha, but suppressed TNF-alpha maturation/secretion by macrophages. The higher the THC concentration in the medium during TNF-alpha induction, the greater the amount of intracellular TNF-alpha precursors that accumulated in the activated macrophages and the less mature TNF-alpha was released from the cells. Data suggest that TNF-alpha production by macrophages was altered greatly by exposure to THC at the levels of TNF-alpha precursor maturation and secretion.  相似文献   

19.
The amplification of DNA from Chlamydia trachomatis by PCR with degenerated primers yielded a 345-bp fragment of the putative RNase P RNA gene. From the deduced DNA sequence of this gene in C. trachomatis, a modified primer pair was designed. The primer pair was subsequently used to obtain the corresponding gene products from Chlamydia pneumoniae and Chlamydia psittaci. Sequence comparisons revealed similarities of 76.6% between C. trachomatis and C. pneumoniae, 79.5% between C. trachomatis and C. psittaci, and 84.7% between C. pneumoniae and C. psittaci. Furthermore, the three species were differentiated by fragment length polymorphism analysis after restriction enzyme cleavage of the PCR products. Sequence variations among 14 serotypes of C. trachomatis were confined to one purine base substitution in the putative RNase P RNA gene of lymphogranuloma venereum strains L1 to L3. Complete sequence similarity was found for nine strains of C. pneumoniae of different geographic origins. Taken together, our results indicate a possibility of the general application of this method in clinical bacteriology. Analysis of the secondary structures of the putative RNase P RNA genes from the different Chlamydia species suggested that a novel structural element in the domain of RNase P RNA is involved in base pairing with the 3'-terminal CCA motif of a tRNA precursor. This structure has not previously been found among RNase P RNAs of members of the division Bacteria.  相似文献   

20.
To elucidate structure-activity relationships for drugs that are able to poison or inhibit topoisomerase II, we investigated the thermodynamics and stereochemistry of the DNA binding of a number of anthracene derivatives bearing one or two 4, 5-dihydro-1H-imidazol-2-yl-hydrazone side chains (characteristic of bisantrene) at different positions of the planar aromatic system. An aza-bioisostere, which can be considered a bisantrene-amsacrine hybrid, was also tested. The affinity for nucleic acids in different sequence contexts was evaluated by spectroscopic techniques, using various experimental conditions. DNA-melting and DNase I footprinting experiments were also performed. The location and number of the otherwise identical side chains dramatically affected the affinity of the test compounds for the nucleic acid. In addition, the new compounds exhibited different DNA sequence preferences, depending on the locations of the dihydroimidazolyl-hydrazone groups, which indicates a major role for the side-chain position in generating specific contacts with the nucleic acid. Molecular modeling studies of the intercalative binding of the 1- or 9-substituted isomers to DNA fully supported the experimental data, because a substantially more favorable recognition of A-T steps, compared with G-C steps, was found for the 9-substituted derivative, whereas a much closer energy balance was found for the 1-substituted isomer. These results compare well with the alteration of base specificity found for the topoisomerase II-mediated DNA cleavage stimulated by the isomeric drugs. Therefore, DNA-binding specificity appears to represent an important determinant for the recognition of the topoisomerase-DNA cleavable complex by the drug, at least for poisons belonging to the amsacrine-bisantrene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号