首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructural implications of the preferred orientation of portlandite crystals and portlandite saturation factors in the pore solution of a fly-ash–pozzolanic-cement mortar that is used in Spain for the disposal of low- and medium-level radioactive waste have been discussed. Changes in the saturation of portlandite, which were promoted by the interaction of two types of simulated radioactive liquid waste (SRLW) with the mortar, were evaluated during a period of 365 d at a temperature of 40°C. The mortar was immersed in two SRLW materials, whose main ions were SO42− (0.68 M ), PO43− (0.89 M ), and Cl (0.51 M ) in one case and SO42− (2.05 M ) and Na+ (4.1 M ) in the other case. The diffusion of those ions through the porous mortar microstructure and related dissolution–precipitation reactions influenced both the quantity and the degree of orientation of portlandite crystals at the paste/sand and paste/fly-ash interfaces. All these effects will lead to a pore refinement of the mortar that improves the strength and durability of a mixture of fly ash and cement mortar.  相似文献   

2.
The activation of the pozzolanic reaction of fly ash in portland cement paste immersed in sulfate solution has been studied. Mixtures of two Spanish fly ashes (ASTM class F) with 0%, 15%, and 35% replacement of portland cement by fly ash were immersed in Na2SO4 solution, of 2880 ppm SO42− concentration, for a period of 90 days. The resistance of the different mixtures to the sulfate attack was evaluated using the Koch-Steinegger test. The results showed that all of the mixtures were sulfate resistant, despite the high Al2O3 content of the fly ash. The diffusion of SO42− and Na+ ions through the pore solution activated the pozzolanic reactivity of the fly ashes, causing microstructural changes, which were characterized by X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM). As a result, the flexural strength of the mixtures increased, principally for the fly ash of a lower particle size and 35% of addition.  相似文献   

3.
The solubility of sulfur trioxide in sodium silicate melts was determined from 1150° to 1250°C by equilibrating melts in gas mixtures of known contents of sulfur dioxide and oxygen. Sulfate forms according to the reactions: O2-+ SO2+ 1/2O2= O2-+ SO3= SO42-. The data obtained at 1200°C were interpreted by the linear equation: log(SO42-) = log( P so2½ P o21/2) + log Y in which Y is a function of the soda/silica ratio. A series of parallel lines was obtained. Relative free oxygen ion activities calculated for 1200°C were in good agreement with theoretical values calculated from the thermodynamic model of Toop and Samis.  相似文献   

4.
In this research, the electrokinetic behavior and stability of nanosized SiC particles suspended in various electroplating solutions were studied. Analyses were performed using electrophoretic mobility photometry and streaming current (SC) techniques. The electrolytes included NiCl2, Ni(SO3NH2)2, and Na3Co(NO2)6, which are currently used in composite plating solutions with concentrations as high as 0.5 M . The results showed that the adsorption of dissolved Ni2+ ions onto the surface of the SiC in the pH range 4–8 changed the sign and magnitude of the surface potential. Moreover, trivalent complex species Co(NO2)63− replaced nickel species on the SiC surface and decreased the surface charge of SiC to between pH 3 and pH 5. Even in a highly concentrated electrolyte solution, the SiC particles still maintained a positive charge in a Ni(SO3NH2)2 suspension with nickel coplating on the cathode. The difference between the SC reading and the zeta potential, as well as the surface adsorption of various species onto the SiC, are discussed here.  相似文献   

5.
The Li2O–B2O3 quasi-binary system is assessed. A two-sublattice ionic solution model, (Li1+) P (O2−, BO33−, B4O72−, B3O4.5) Q , is adopted to describe the liquid phase. All solid phases are treated as stoichiometric compounds. A set of parameters consistent with most of the available experimental data on phase diagram and thermodynamic properties is obtained by using the CALPHAD technique.  相似文献   

6.
Crystal Structure of Zirconia Prepared with Alumina by Coprecipitation   总被引:4,自引:0,他引:4  
Zirconia was prepared by firing the coprecipitate from ZrOCl2and AlCl3mixed aqueous solution with ammonia. When fired above 600°C, the products were fine crystalline tetragonal zirconia of crystallite size <10 nm. In previous studies, the tetragonal phase had been assumed to be a (Zr1− x 4+Al x 3+)O2− x /2solid solution, where x ≤ 0.25. However, X-ray diffraction pattern simulation and Al K -edge XANES spectroscopy confirmed the present product to be a mixture of t -ZrO2fine powder with a small amount of δ-Al2O3of very low crystallinity, even below the expected compositional range of x ≤ 0.25 in the (Zr1− x 4+Al x 3+)O2− x /2solid solution.  相似文献   

7.
Hydroxyapatite samples were produced by two different wet-chemical methods, and characterized by X-ray diffraction, infrared (IR), thermal gravimetric analysis (TGA), scanning electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectrometry, and compression strength measurements. The IR spectra showed the presence of CO32− ions in all samples. After the sintering, the CO32− bands almost disappeared, indicating a large release of CO32− ions by the samples, which were also confirmed by TGA. By mixing samples produced by both methods, a bioceramic was prepared and, after sintering at 900°C for 1 h, compressive strengths of 26–30 MPa were obtained.  相似文献   

8.
The synthesis and characterization of yttrium hydroxyl carbonate (Y(OH)CO32−) and yttrium nitrate hydroxide hydrate (Y(OH)NO3H2O) precursor materials as well as Y2O3 nanoparticles are reported. The resultant precursor particle size is about 10–12 nm with a narrow size distribution by the enzymatic decomposition method, whereas the particle size was smaller than those acquired by the homogeneous and alkali precipitation methods. The formation of Y(OH)CO32− and Y(OH)NO3H2O species was also evident from the fourier-transform infrared spectrometry (FT-IR) analysis. Precipitated Y(OH)CO32− precursors have an amorphous nature whereas Y(OH)NO3H2O precursors have a crystalline nature, which was manifested from the XRD analysis. Moreover, precipitated Y(OH)NO3H2O precursors were found in the agglomerated form and Y(OH)CO32− was established in the monodispersed form, as determined from the FE-SEM, TEM and DLS measurements. It was demonstrated that calcination of precursor materials at 900°C eventually removed the inorganic anions from the precursors and consequently produced crystalline Y2O3 nanoparticles, which was evident from the XRD and FT-IR analysis. The EDS analysis confirms Er3+ doping in the Y2O3 nanoparticles. The morphology and the size of the Y2O3 nanoparticles are almost unchanged before and after the calcination.  相似文献   

9.
Reaction equilibrium constants for the sulfate decomposition process, which releases oxygen and sulfur oxide gas in soda–lime–silica glass melts, have been determined. The chemical solubility of SO2, probably in the form of sulfite ions in soda–lime–silica melts, has also been determined. The chemical solubility value of SO2, dissolving as sulfite, ranges between 0.02 and 0.06 wt% SO 3 2− at 1 bar SO2 pressure in the temperature range of 1600–1800 K. Results of square-wave-voltammetry studies and measurements of the temperature-dependent sulfur retention after the fining process of commercial float glass melts and a model soda–lime–silica melt, with 74 wt% SiO2, 16 wt% Na2O, and 10 wt% CaO, are presented. The measured sulfur retention data and the results of the square-wave-voltammetry studies are used to determine the equilibrium constant of the sulfate decomposition reaction in the temperature range of 1600–1800 K. The thermodynamic relations and properties found for sulfate decomposition are used to derive activities of sodium oxide in soda–lime–silica melts. Literature values for sodium oxide activities in these glass melts are rare. In this study, these activities have been determined by a method, based on the measurement of sulfate decomposition equilibrium constants and the residual sulfate concentrations in glass melts, equilibrated with almost pure sodium sulfate galls.  相似文献   

10.
The hydration of tricalcium aluminate, in the presence of gypsum, is investigated using in situ "real-time"1H NMR spin–spin relaxation, X-ray diffraction, and scanning electron microscope experiments. Aside from rapid ettringite formation within the first 45 min, it is shown that a re-distribution of water within the first 2 h contributes significantly to the retardation of the rate of hydration. From the 1H NMR component with T 2 of approximately 20 μs, the continual disappearance of ettringite and the production of the layered monosulfate structure is monitored. In addition, the technique makes possible the monitoring of the change in the quantity of interlayer water in monosulfate, as well as the time scale associated with the decrease in the effective interlayer spacing, resulting from the ionic substitution of SO42− for OH. The ionic substitution within monosulfate starts after approximately 9 h. Although it has been believed that the time scale for this reaction is fast, we have shown that it can take days to reach completion.  相似文献   

11.
Ionic Equilibria in Liquid Silicates   总被引:2,自引:0,他引:2  
Liquid silicates, in common with phosphates and probably other oxygen-containing inorganic polymers which are stable at high temperatures, contain in general a multitude of anionic species ranging in size and complexity from simple "monomeric" groupings such as SiO44− and P043− to continuous, cross-linked networks of infinite molecular weight. The average size and distribution of these species in binary systems may be inferred, at least approximately, from thermodynamic data in combination with polymer theory on the assumption that the activity coefficients of the constituents are arrayed in geometric series. This is equivalent to assuming ideal mixing of polymeric segments. As anticipated, deviations from the theory become significant at the gel point, which varies with the nature of the cation. The significance of these concepts in relation to the constitution of glasses is discussed. In particular, it is indicated that a glass may consist of sol and gel portions, the complexity and relative proportions of which vary with the nature of the cation and the silica content. In theory, the ion SiO44− is the most abundant single species of discrete silicate ion at all silica contents.  相似文献   

12.
Microstructural changes occurring during oxidation of the reduced form of donor-doped BaTiO3 (Ba1− X D X .Ti1− X 4+Ti X 3+O3) and during reduction of the oxidized form of donor-doped BaTiO3 (Ba1− X D X .Ti1− X /44+( V Ti) X /4O3) were studied using TEM. Samples of both types of solid solutions, containing different La concentrations (from 2 to 20 mol% La), were prepared by sintering under reducing conditions and in air, respectively. The reduced form of donor-doped BaTiO3 was oxidized by annealing at high temperatures (1150° and 1350°C) in air, while the oxidized form was reduced by annealing under reducing conditions. Because of oxidation of the reduced phase of donor-doped BaTiO3, the Ti-rich phases Ba6Ti17O40 and BaLa2Ti4O12 were precipitated. Reduction of the oxidized form caused precipitation of the Ba-rich phase Ba2TiO4 preferentially inside the matrix grains. All precipitates had well-defined orientational relationships with the perovskite matrix.  相似文献   

13.
The relationship between electronic polarizability of oxide(—II), αO2−, and the electron donor power, expressed as the optical basicity, ∧, indicates that ∧(TiO2) is much greater than ∧(SiO2) and is approximately the same as ∧(CaO). Such a high basicity is supported by the trend in the Racah B parameter for the Ni2+ ion in crystalline hosts and is also indicated from αO2− values of glasses containing TiO2. Electronic polarizability and other data for zirconium(IV) media indicate that ZrO2 also has a high basicity, but that ∧(ZrO2) is somewhat less than ∧(TiO2).  相似文献   

14.
Wet-jet-milled alumina slurries exhibited distinctly different stability behavior compared with ball-milled ones in terms of reflocculent efficiency and rheological properties. The distinction was attributed to the different behavior of the same dispersant (NH4+ salt of poly(acrylic acid); PAA–NH4+) in ball milling and wet-jet milling. Alumina particles after the wet-jet milling retained the initial surface conditions, although ball-milled alumina particles yielded more hydroxyl groups on the surface. Furthermore, degradation of dispersant on milling was investigated qualitatively. Infra-red analysis and isoelectric point measurements suggested that degradation of the dispersant occurred during ball milling, indicating neutralization of the dispersant due to formation of monodentate COOX groups. On the other hand, in the case of wet-jet milling, COO groups of PAA–NH4+ were not degraded at all, indicating maintenance of the structures of dispersant with electrostatic repulsion. Change in the polymer size of the dispersant by different milling methods was confirmed using high performance liquid chromatography (HPLC) measurements. The HPLC results of the wet-jet milled samples showed that a dispersant with a larger molecular size was generated. Force measurement on approach via the colloid probe method in the centrifuged supernatant of the milled slurries confirmed that the interaction distance between an α-alumina colloid probe and c-sapphire surface was about two times larger in the wet-jet-milled slurry supernatant compared with the ball milled one. Thus, it was found that wet-jet milling process led to a stable slurry because of the maintenance of not only steric repulsion but also electrostatic repulsion.  相似文献   

15.
Vapor transport equilibration (VTE) treatments were performed on a Y-cut bulk Er (1.6 mol%)-doped congruent LiNbO3 crystal and an X-cut pure congruent crystal, on one surface of which a 40 nm-thick film of erbium metal was coated before the VTE treatment. Scanning electron microscope, powder or single-crystal X-ray diffraction (XRD), polarized infrared absorption/emission of Er3+ as well as micro-Raman spectroscopy were used to study the two VTE crystals. The results are discussed in comparison with a corresponding as-grown bulk Er-doped crystal, calcined ErNbO4 powder, and a locally Er-doped congruent LiNbO3 crystal prepared by using the standard Er-diffusion technique. The experimental results show that the VTE treatment induces the formation of micrometer-sized ErNbO4 precipitates with the crystallographic morphology of a flat polyhedron not only on the surfaces of both crystals but also in the bulk of the homogeneously Er-doped one. The optical absorption and emission studies show that the formation of the precipitates results in substantial spectral changes in both the 0.98 and 1.5 μm regions. The micro-Raman studies allow to resolve four additional Raman peaks around 800 cm−1 in the E(TO) spectra of the two VTE crystals. These additional Raman peaks are associated with the characteristic vibrations with respect to the NbO43− group. Characteristic XRD, optical absorption, and emission and Raman peaks for identifying the ErNbO4 phase are proposed. Finally, the formation mechanism and light-scattering effect of the precipitates are discussed.  相似文献   

16.
Hydroxyl-type Sc2O3 precursors have been synthesized via precipitation at 80°C with hexamethylenetetramine as the precipitant. The effects of starting salts (scandium nitrate and sulfate) on powder properties are investigated. Characterizations of the powders are achieved by elemental analysis, X-ray diffractometry (XRD), differential thermal analysis/thermogravimetry (DTA/TG), high-resolution scanning electron microscopy (HRSEM), and Brunauer-Emmett-Teller (BET) analysis. Hard-aggregated precursors (γ-ScOOH·0.6H2O) are formed with scandium nitrate, which convert to Sc2O3 at temperatures ≥400°C, yielding nanocrystalline oxides of low surface area. The use of sulfate leads to a loosely agglomerated basic sulfate powder having an approximate composition of Sc(OH)2.6(SO4)0.2·H2O. The powder transforms to Sc2O3 via dehydroxylization and desulfurization at temperatures up to 1000°C. Well-dispersed Sc2O3 nanopowders (∼64.3 nm) of high purity have been obtained by calcining the basic sulfate at 1000°C for 4 h. The effects of SO42− on powder properties are discussed.  相似文献   

17.
The acid-base equilibria in the liquid silicates in the system PbO–SiO2 are discussed, Data reported by Richardson and Webb, wherein the PbO activity is determined over a composition range of 0 to 60 mole % SiO2, are used for comparison with activities computed from structural models with consideration of the acid-base equilibria. The results suggest that the liquid silicates in the system PbO–SiO2, for the composition and temperature ranges studied, are constituted of a relatively low number of anionic species and that these anions are of a relatively small size (i.e., O2–, SiO4–, (SiO3)36−. and (SiO2.5)66−).  相似文献   

18.
研究了掺萘系高效减水剂浆体中同时掺入葡萄糖酸钠时,对水泥浆体流动性和流动性损失的影响。适量的葡萄糖酸钠可显著提高浆体初始流动度,并降低流动度损失。采用紫外分光光度计、zeta电位仪、X衍射仪和扫描电子显微镜测试了浆体对萘系高效减水剂的吸附量、水泥颗粒表面电位、水化产物钙矾石X衍射峰值强度和微观形貌。结果表明:在同等萘系高效减水剂掺量下,葡萄糖酸钠延缓了钙矾石的生成,并与萘系减水剂在水泥颗粒表面形成竞争吸附,导致了水化过程中萘系高效减水剂消耗量的降低,增加了高效减水剂在水泥颗粒表面的有效吸附量。  相似文献   

19.
Calcium phosphate invert glasses, which contain P2O72− and PO43− ions, have been prepared via the addition of a small amount of TiO2. The formation of bonelike calcium phosphate apatite on the surface of the phosphate invert glasses was examined in simulated body fluid (SBF) at a temperature of 37°C. Soaking for 20 d resulted in the deposition of leaflike apatite particles on 6CaO·3P2O5·TiO2 invert glass (based on molar ratio). The glass had much-greater chemical durability against SBF, in comparison with a metaphosphate glass; P ions were not dissolved excessively from the 6CaO·3P2O5·TiO2 glass, so the apatite formation was not suppressed.  相似文献   

20.
The adsorptive behavior of admixtures and the hydration of cement in the presence of admixtures were examined and the relationships of them with the physical properties of fresh cement paste including fluidity, variation of fluidity with time and setting time were discussed with the quantitative determination of organic admixture adsorbed on the cement, and with the observation and determination of the surface microstructure and composition of polished clinker dipped in aqueous solution containing a specified quantity of admixture by advanced method of surface analysis.

In order to prepare the same fluidity of fresh cement paste, mortar and concrete, the required amount of an easily adsorbed admixture is larger than that of a hard adsorbed one. An admixture having a functional group producing a complex salt with Ca2+ decreases the concentration of Ca2+ in liquid phase at early age and delays the saturation of Ca2+, which influences the morphology of hydrate produced, causes fluidity loss with time and delays the setting time of cement. The microstructural and compositional estimations of the adsorption layer of admixture on the surface of clinker minerals by in-lens FESEM, ESCA-imaging, AES and AFM indicates that the admixture is partially adsorbed to the interstitial phase in a thick layer, forming characteristic three dimensional surface structure.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号