首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence from anatomical tracer studies as well as lesions of the primary auditory cortex (AI) indicate that the principal relay nucleus of the auditory thalamus, the ventral part of the medial geniculate (MGv), projects in parallel to AI and the rostral area on the supratemporal plane of the macaque monkey. The caudomedial area, by contrast, receives input from MGv only indirectly via AI, and neurons in this area are often tuned to the spatial location of a complex sound. The belt areas on the lateral surface of the superior temporal gyrus receive input from the primary areas. Neurons in these areas respond better to more complex stimuli, such as band-pass noise pulses of frequency-modulated sweeps, than to pure tones. Often neurons in the lateral belt respond well to species-specific communication calls. The hypothesis is put forward that the central auditory pathways in the macaque monkey are organized into parallel streams, similar to the visual system, one for the processing of spatial information, the other for the processing of auditory "patterns". Evidence from neuroimaging studies in humans with MRI and PET are consistent with this hypothesis. Virtual auditory space stimuli lead to selective activation of an inferior parietal region, whereas speech-like stimuli activate superior temporal regions.  相似文献   

2.
Responses were recorded from 130 single neurones in the primary auditory cortex of 12 ketamine-anaesthetized cats in response to double-click stimuli, to a /ba/-/pa/ phoneme continuum and to gaps inserted early (after 5 ms) and late (after 500 ms) in a 1 s duration noiseburst. Stimulus levels were between 45 and 75 dB SPL. Neural detection threshold for the 'late gap' was less than 5 ms. For the double click and 'early gap' stimuli thresholds were between 40 and 50 ms, whereas the phoneme continuum threshold for voice-onset-time (VOT) was between 10 and 25 ms. The 'late gap' and VOT thresholds are similar to psychophysical gap detection and the /ba/-/pa/ categorical perception boundary respectively.  相似文献   

3.
The sensation of a single sound event can be altered by subsequent sounds. This study searched for neural mechanisms of such retroactive effects in macaque auditory cortex by comparing neural responses to single tones with responses to two consecutive tones. Retroactive influences were found to affect late parts of the response to a tone, which comprised 53/134 of the recordings of action potentials and 88/131 of the recordings of field potentials performed in primary, caudal, and medial auditory fields. If before or during the occurrence of the late response to the first tone a second tone was presented the late response was suppressed. Suppression of late cortical responses parallels perceptual phenomena like backward recognition masking, suggesting that suppression of late responses provides a neural correlate of auditory backward effects.  相似文献   

4.
Infrequent "deviant' auditory stimuli embedded in a homogeneous sequence of "standard' sounds evoke a neuromagnetic mismatch field (MMF), which is assumed to reflect automatic change detection in the brain. We investigated whether MMFs would reveal hemispheric differences in cortical auditory processing. Seven healthy adults were studied with a whole-scalp neuromagnetometer. The sound sequence, delivered to one ear at time, contained three infrequent deviants (differing from standards in duration, frequency, or interstimulus interval) intermixed with standard tones. MMFs peaked 9-34 msec earlier in the right than in the left hemisphere, irrespective of the stimulated ear. Whereas deviants activated only one MMF source in the left hemisphere, two temporally overlapping but spatially separate sources, one in the temporal lobe and another in the inferior parietal cortex, were necessary to explain the right-hemisphere MMFs. We suggest that the bilateral MMF components originating in the supratemporal cortex are feature specific whereas the right-hemisphere parietal component reflects more global auditory change detection. The results imply hemispheric differences in sound processing and suggest stronger involvement of the right than the left hemisphere in change detection.  相似文献   

5.
Inferior temporal cortex of squirrel monkeys consists of caudal (ITC), intermediate (ITI), and rostral (ITR) subdivisions, possibly homologous to TEO, posterior TE, and anterior TE of macaque monkeys. The present study compared visual learning in squirrel monkeys with ablations of ITC; ITI and ITR (group ITRd); or ITI, ITR, and more ventral cortex, including perirhinal cortex (group ITR+), with visual learning in unoperated controls. The ITC monkeys had significant impairments on pattern discriminations and milder deficits on delayed nonmatching to sample (DNMS) of objects. The ITRd monkeys had deficits on some pattern discriminations but not on DNMS. The ITRd monkeys were significantly impaired on DNMS and some pattern discriminations. These results are similar to those found in macaques and support the proposed homologies. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
A neuromagnetic study in tinnitus patients and normal-hearing controls was performed with a modified contingent negative variation (CNV) paradigm. While the warning stimulus S1 was a tone burst at an intensity well above threshold, the imperative stimulus S2 was presented at a near threshold intensity because, in the majority of cases, the perceived loudness of tinnitus is very close to the threshold for a pure tone of the same frequency. Subjects had to respond to S2 by pressing a button until its offset was detected. In this case, instead of the usual sudden cut-off of the CNV after the perception of S2, a slow negative deflection develops, the post-imperative negative variation (PINV). Its initial portion probably indicates the development of a second initial CNV because the subject had to attend also to the offset of S2. The neuromagnetic data were analysed both in the time domain and in the frequency domain (short-time spectral analysis of the classical EEG bands). The time domain waveform as well as the spectrotemporal patterns of the MEG bands exhibited deviations from the normal pattern in several tinnitus subgroups, depending on the characteristics of tinnitus (tonal vs. noisiform, monaural vs. binaural) and on the stimulation conditions (tinnitus side vs. non-tinnitus side).  相似文献   

7.
8.
Activation of auditory cortex during silent lipreading   总被引:1,自引:0,他引:1  
Watching a speaker's lips during face-to-face conversation (lipreading) markedly improves speech perception, particularly in noisy conditions. With functional magnetic resonance imaging it was found that these linguistic visual cues are sufficient to activate auditory cortex in normal hearing individuals in the absence of auditory speech sounds. Two further experiments suggest that these auditory cortical areas are not engaged when an individual is viewing nonlinguistic facial movements but appear to be activated by silent meaningless speechlike movements (pseudospeech). This supports psycholinguistic evidence that seen speech influences the perception of heard speech at a prelexical stage.  相似文献   

9.
We evaluated two hypothetical codes for sound-source location in the auditory cortex. The topographical code assumed that single neurons are selective for particular locations and that sound-source locations are coded by the cortical location of small populations of maximally activated neurons. The distributed code assumed that the responses of individual neurons can carry information about locations throughout 360 degrees of azimuth and that accurate sound localization derives from information that is distributed across large populations of such panoramic neurons. We recorded from single units in the anterior ectosylvian sulcus area (area AES) and in area A2 of alpha-chloralose-anesthetized cats. Results obtained in the two areas were essentially equivalent. Noise bursts were presented from loudspeakers spaced in 20 degrees intervals of azimuth throughout 360 degrees of the horizontal plane. Spike counts of the majority of units were modulated >50% by changes in sound-source azimuth. Nevertheless, sound-source locations that produced greater than half-maximal spike counts often spanned >180 degrees of azimuth. The spatial selectivity of units tended to broaden and, often, to shift in azimuth as sound pressure levels (SPLs) were increased to a moderate level. We sometimes saw systematic changes in spatial tuning along segments of electrode tracks as long as 1.5 mm but such progressions were not evident at higher sound levels. Moderate-level sounds presented anywhere in the contralateral hemifield produced greater than half-maximal activation of nearly all units. These results are not consistent with the hypothesis of a topographic code. We used an artificial-neural-network algorithm to recognize spike patterns and, thereby, infer the locations of sound sources. Network input consisted of spike density functions formed by averages of responses to eight stimulus repetitions. Information carried in the responses of single units permitted reasonable estimates of sound-source locations throughout 360 degrees of azimuth. The most accurate units exhibited median errors in localization of <25 degrees, meaning that the network output fell within 25 degrees of the correct location on half of the trials. Spike patterns tended to vary with stimulus SPL, but level-invariant features of patterns permitted estimates of locations of sound sources that varied through 20-dB ranges. Sound localization based on spike patterns that preserved details of spike timing consistently was more accurate than localization based on spike counts alone. These results support the hypothesis that sound-source locations are represented by a distributed code and that individual neurons are, in effect, panoramic localizers.  相似文献   

10.
Two tone bursts separated by a silent interval and imbedded in a background white noise were presented to elderly subjects (M age?=?71.3 years) and young subjects (M age?=?22.2 years). Subjects were required to judge when the two tone bursts fused perceptually by adjusting the duration of tone-one. The bursts were separated by six discrete interstimulus intervals of 4, 8, 16, 24, 32, or 40 ms. The tone-two burst was held constant at 100 ms. Fusion point was defined as that critical tone-one duration at which the two tones fused (were perceived as one). Elderly subjects reached fusion point at longer critical tone-one durations than young subjects at each interval tested. The function relating tone-one duration and interval conformed to an exponential curve and is discussed with respect to an exponential decay model of the inhibitory interactions of neural systems responding to onsets and offsets of sensory events. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Reports in recent psychoacoustical literature have suggested that pitch and rhythm properties of nonverbal stimuli may be processed differently by the 2 cerebral hemispheres. A review of this literature and background information led to the following conclusions: (a) Perception of pitch stimuli probably does not require differential cerebral processing. Only when some type of novel or complex time structure is generated in the stimulus presentation do the responses of Ss reflect a cerebral dominance effect. (b) The asymmetries demonstrated in the results of rhythm experiments closely parallel those found in verbal experiments. In addition, rhythm structure may also provide a framework for the synthesis and analysis of all incoming perceptual information. (34 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Cells in the cat primary auditory cortex (A1) were investigated to see whether they could integrate sound signals over time. A1 cells responded well to frequency-modulated sweeps. When a portion of the sweep was replaced by silence the response was weakened considerably. However, the response strength was restored when the silent portion was replaced by a burst of band noise, even though the cells did not respond to the burst of noise alone. These results indicate that A1 cells do not respond simply to instantaneous characteristics of acoustic stimuli but respond to those integrated over time.  相似文献   

13.
"Physiological memory" is enduring neuronal change sufficiently specific to represent learned information. It transcends both sensory traces that are detailed but transient and long-term physiological plasticities that are insufficiently specific to actually represent cardinal details of an experience. The specificity of most physiological plasticities has not been comprehensively studied. We adopted receptive field analysis from sensory physiology to seek physiological memory in the primary auditory cortex of adult guinea pigs. Receptive fields for acoustic frequency were determined before and at various retention intervals after a learning experience, typified by single-tone delay classical conditioning, e.g., 30 trials of tone-shock pairing. Subjects rapidly (5-10 trials) acquire behavioral fear conditioned responses, indexing acquisition of an association between the conditioned and the unconditioned stimuli. Such stimulus-stimulus association produces receptive field plasticity in which responses to the conditioned stimulus frequency are increased in contrast to responses to other frequencies which are decreased, resulting in a shift of tuning toward or to the frequency of the conditioned stimulus. This receptive field plasticity is associative, highly specific, acquired within a few trials, and retained indefinitely (tested to 8 weeks). It thus meets criteria for "physiological memory." The acquired importance of the conditioned stimulus is thought to be represented by the increase in tuning to this stimulus during learning, both within cells and across the primary auditory cortex. Further, receptive field plasticity develops in several tasks, one-tone and two-tone discriminative classical and instrumental conditioning (habituation produces a frequency-specific decrease in the receptive field), suggesting it as a general process for representing the acquired meaning of a signal stimulus. We have proposed a two-stage model involving convergence of the conditioned and unconditioned stimuli in the magnocellular medial geniculate of the thalamus followed by activation of the nucleus basalis, which in turn releases acetylcholine that engages muscarinic receptors in the auditory cortex. This model is supported by several recent findings. For example, tone paired with NB stimulation induces associative, specific receptive field plasticity of at least a 24-h duration. We propose that physiological memory in auditory cortex is not "procedural" memory, i.e., is not tied to any behavioral conditioned response, but can be used flexibly.  相似文献   

14.
A 17-item questionnaire probing professional preparation and current practices in central auditory assessment was mailed to 500 audiologists selected randomly from the membership directory of the American Academy of Audiology. Data from 183 respondents, representing a 37 percent response rate, were analyzed. The majority of respondents reported minimal academic and clinical preparation in assessment of the central auditory nervous system. Eighty percent of respondents had not taken any graduate course explicitly dedicated to central auditory processing. However, 80 percent had taken at least one basic science course in central audition and 83 percent reported having taken at least one graduate course that included some coverage of central auditory processing and/or the central auditory nervous system. A mean of 3 clinical clock hours accrued in this area was reported. Not surprisingly, 78 percent reported a satisfaction rating of < or =50 percent relative to the graduate education they received in this area and only 41 percent reported providing central auditory assessment. Comparisons with prior surveys show substantial change in the preferred test battery. Most notable is the pivotal role of physiologic measures, with the acoustic reflex and auditory brainstem response listed along with the SCAN as the three most frequently used assessment tests/procedures. Overall, the results suggest a need for improvement in professional preparation in evaluation of central auditory function.  相似文献   

15.
Participants made speeded target-nontarget responses to singly presented auditory stimuli in 2 tasks. In within-dimension conditions, participants listened for either of 2 target features taken from the same dimension; in between-dimensions conditions, the target features were taken from different dimensions. Judgments were based on the presence or absence of either target feature. Speech sounds, defined relative to sound identity and locale, were used in Experiment 1, whereas tones, comprising pitch and locale components, were used in Experiments 2 and 3. In all cases, participants performed better when the target features were taken from the same dimension than when they were taken from different dimensions. Data suggest that the auditory and visual systems exhibit the same higher level processing constraints. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
A cell type, preadipocytes, isolated from the stroma of adult human adipose tissue appears capable of differentiating, in culture, into a cell with morphological features similar to that observed in terminally differentiated human adipocytes cultured under similar conditions. During this process of differentiation, preadipocytes develop extensive rough endoplasmic reticulum with prominent cisternae, the chromatin of most nuclei becomes decondensed and lipid bodies accumulate to levels observed in cultured adipocytes. Fibroblasts derived from non-adipose tissue do not undergo the same morphological changes when cultured under similar conditions.  相似文献   

17.
We recorded magnetic and electrical responses simultaneously in an auditory detection task to elucidate the brain areas involved in auditory processing. Target stimuli evoked magnetic fields peaking at approximately the same latency of around about 400 msec (M400) over the anterior temporal, superior temporal, and parietal regions on each hemisphere. Equivalent current dipoles (ECDs) were analyzed with a time-varying multidipole model and superimposed on each subject's magnetic resonance image (MRI). Multiple independent dipoles located in the superior temporal plane, inferior parietal lobe, and mesial temporal region best accounted for the recorded M400 fields. These findings suggest that distributed activity in multiple structures including the mesial temporal, superior temporal, and inferior parietal regions on both hemispheres is engaged during auditory attention and memory updating.  相似文献   

18.
The auditory afterimage is a sensation which occurs for several seconds after the exciting acoustic signal has been switched off, and which roughly corresponds to the inverse of the spectrum of the exciting signal. In contrast to the well-known visual afterimage, the physiological mechanism generating the auditory afterimage has been questionable so far. Neuromagnetic source imaging revealed that the source of cortical neural activity which coincides with the sensation of the afterimage is located in the auditory cortex and exhibits a tonotopic organization similar to that of the sustained response which occurs during continuous presentation of an acoustic stimulus. It is concluded that the neural processes leading to the generation of the two phenomena -sustained response and auditory afterimage - are similar.  相似文献   

19.
20.
In the present study, we determined connections of three newly defined regions of auditory cortex with regions of the frontal lobe, and how two of these regions in the frontal lobe interconnect and connect to other portions of frontal cortex and the temporal lobe in macaque monkeys. We conceptualize auditory cortex as including a core of primary areas, a surrounding belt of auditory areas, a lateral parabelt of two divisions, and adjoining regions of temporal cortex with parabelt connections. Injections of several different fluorescent tracers and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were placed in caudal (CPB) and rostral (RPB) divisions of the parabelt, and in cortex of the superior temporal gyrus rostral to the parabelt with parabelt connections (STGr). Injections were also placed in two regions of the frontal lobe that were labeled by a parabelt injection in the same case. The results lead to several major conclusions. First, CPB injections label many neurons in dorsal prearcuate cortex in the region of the frontal eye field and neurons in dorsal prefrontal cortex of the principal sulcus, but few or no neurons in orbitofrontal cortex. Fine-grain label in these same regions as a result of a WGA-HRP injection suggests that the connections are reciprocal. Second, RPB injections label overlapping prearcuate and principal sulcus locations, as well as more rostral cortex of the principal sulcus, and several locations in orbitofrontal cortex. Third, STGr injections label locations in orbitofrontal cortex, some of which overlap those of RPB injections, but not prearcuate or principal sulcus locations. Fourth, injections in prearcuate and principal sulcus locations labeled by a CPB injection labeled neurons in CPB and RPB, with little involvement of the auditory belt and no involvement of the core. In addition, the results indicated that the two frontal lobe regions are densely interconnected. They also connect with largely separate regions of the frontal pole and more medial premotor and dorsal prefrontal cortex, but not with the extensive orbitofrontal region which has RPB and STGr connections. The results suggest that both RPB and CPB provide the major auditory connections with the region related to directing eye movements towards stimuli of interest, and the dorsal prefrontal cortex for working memory. Other auditory connections to these regions of the frontal lobe appear to be minor. RPB has connections with orbitofrontal cortex, important in psychosocial and emotional functions, while STGr primarily connects with orbital and polar prefrontal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号