首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过搅拌摩擦加工技术将SiC颗粒加入到A356铝合金中制备铝基复合材料,搅拌摩擦加工参数为:旋转速度1800r/min和行进速度127mm/min。基体金属A356铝合金为亚共晶AlSi枝晶组织,而搅拌区的组织与基体金属区不同。共晶Si和SiC颗粒均匀分布于初始铝固溶体中,而经历了剧烈变形的热力影响区的共晶Si和SiC颗粒呈沿旋转方向分散的特征。搅拌区的硬度比基体金属的高,因为在搅拌区存在的缺陷明显减少,共晶Si和SiC均匀分布在其中。  相似文献   

2.
Friction stir processing (FSP) of high softening-temperature materials such as nickel-based superalloys is considered to be difficult. Laser heating of a localised area ahead of the FSP tool was used to provide sufficient plasticity during the FSP of IN738LC nickel-based superalloy. The stir zone (SZ) microstructure of the friction stir processed and laser-assisted friction stir processed were characterised. Laser-assisted friction stir processing (LAFSP) produced a defect-free pass, but FSP resulted in generation of a discontinuity in the SZ. Both lower volume fraction of partially dissolved γ′ precipitates and coarser grain structure of SZ in LAFSP led to more ductility of the SZ material and elimination of the defects.  相似文献   

3.
《Acta Materialia》2008,56(8):1701-1711
Spatial variations of microstructure, hardness, chemical composition, tensile behavior, texture and residual stresses were investigated in a friction-stir-processed (FSP) AZ31B magnesium alloy. The residual stresses were measured using two different methods: neutron diffraction and the contour method. No significant variations in the hardness and chemical compositions were found in the FSP zones, including the severely deformed stir zone (SZ), which showed a finer grain size compared to the heat-affected zone and base material. On the other hand, significant changes in the tensile yield strength, texture, and residual stresses were observed in the FSP zones. The relationship between the texture variations and yield strength reduction; and its influence on the decrease in the residual stress near the SZ is discussed. Finally, the residual stresses measured by neutron diffraction and the contour method are compared and the effect of the texture on neutron diffraction residual stress measurements is discussed.  相似文献   

4.
Abstract

Cast Mg alloys were processed using friction stir processing (FSP) to acquire a fine grained structure and high strength. Actually, FSP is a novel grain refinement method for light metal alloys. Using FSP, a cast microstructure with coarse grain size was refined to equiaxial fine grain through dynamic recrystallisation; second phase particles were finely dispersed by FSP. Moreover, FSP is effective to eliminate cast defects such as microshrinkages or porosities. Commercial die cast Mg alloy (AZ91D) and high strength Mg–Y–Zn alloy plates were prepared for FSP. Heat input using a rotational tool during FSP closely affected the microstructure in the stirred zone. Actually, FSP with lower heat input produced a finer grain size and higher hardness. Changes in the friction stir processed microstructures affecting mechanical properties were not only grain refinement, but also second phase particle distributions. Results show that alloys with high hardness by FSP have finely dispersed second phase particles without dissolution during FSP.  相似文献   

5.
Microstructural evolution, hardness, and shear strength of the cast plates of GZ31 magnesium alloy were investigated after friction stir processing (FSP). Due to severe plastic deformation and dynamic recrystallization, FSP breaks the dendrites and results in a fine homogenous structure in the stirred zone (SZ) having average grain sizes of about 4.0 and 2.5 μm in the one and two-pass FSPed plates, respectively. As a novel approach, strength of the processed plates was examined by shear punch testing in three regions of the SZ on the surface layer, namely, center line (CL), retreating side (RS), and advancing side (AS). FSP showed great potential in the enhancement of SZ ultimate shear strength from 114 to about 152 and 155 MPa in the one and two-pass FSPed materials, respectively. The same trend was observed in hardness values of the SZ, where the average hardness of the base material increased from 41 to 60 and 68 Vickers after one and two passes of FSP, respectively. The variations in the shear strength of the CL, RS, and AS zones of the SZ were about 5% for the first pass of FSP, the effect which was decreased to less than 2% after two passes of FSP.  相似文献   

6.
采用搅拌摩擦加工(Friction stir processing,FSP)技术对AZ31镁合金进行加工,通过采取不同温度及保温时间的退火工艺,研究了FSP镁合金在退火过程中的微观组织演变过程及硬度变化规律。结果表明,FSP成功制备了细晶AZ31镁合金,其平均晶粒尺寸细化程度达54.9%。当退火温度在200~300 ℃时,加工区(SZ)晶粒尺寸较为稳定,且组织发生不同程度的均匀化和细化;当温度超过300 ℃时,加工区晶粒互相吞噬而快速长大。在退火温度较低、短时间保温时热影响区(HAZ)组织变化不明显,而延长保温时间或者升高温度,HAZ区组织会迅速细化、均匀化;当退火温度超过300 ℃时,再结晶会在短时间内完成,随后晶粒继续长大。在300 ℃下保温60 min为最优退火工艺,可使SZ、HAZ组织分别细化10.9%、35.6%。  相似文献   

7.
对TA5钛合金进行搅拌摩擦加工(FSP),获得超细晶组织.为了研究搅拌摩擦加工过程中的温度分布和材料流动情况,使用欧拉-拉格朗日耦合(CEL)方法对加工过程进行热力耦合模拟.采用光学显微镜、扫描电镜、硬度和拉伸测试技术对合金的显微组织和力学性能进行表征.由于在加工过程中材料发生动态再结晶,因此,加工后的合金由细小等轴晶...  相似文献   

8.
G.R. Cui  Z.Y. Ma  S.X. Li 《Acta Materialia》2009,57(19):5718-5729
The microstructure of the stirred zone (SZ) resulting from friction stir processing or welding (FSP/FSW) has usually been assumed to be uniform when discussing the mechanical properties. However, numerous works have indicated that the fine-grained microstructures in the SZ were non-uniform, with precipitate, texture and grain size gradients caused by the severe plastic deformation and heat distribution. In this work commercial aluminum alloy 5083-H112 was subjected to FSP and fine-grained microstructures with an average grain sizes of 2.7–13.4 μm were obtained by controlling the FSP conditions. The stress–strain curves exhibited stepped yield point elongation, which was suggested to be associated with these characteristic non-uniform microstructures. Tensile tests indicated that the Hall–Petch relationship held in this FSP alloy when taking account of the average grain size. Toughness analysis indicated that the optimum toughness was anticipated to be obtained around a grain size of 1 μm for this FSP alloy.  相似文献   

9.
In the present study, the relationship between structural and mechanical properties of friction stir processed Al-1100 alloy and process parameters (tool rotation rate: ω and traverse speed: ν) was studied to get an better understanding and optimizing the friction stir processing (FSP) condition of this alloy. Microstructural studies revealed that increasing of ω up to 720 rpm resulted in grain refinement in the stirred zone (SZ), but higher increasing of ω caused grain growth in this zone. These variations of SZ grain size illustrated that the prevailing factor that determined the SZ grain size was plastic deformation at first and thereafter, peak temperature in the SZ. Mechanical properties investigations were in accordance with microstructural findings and illustrated that optimized FSP condition for Al-1100 alloy was 720 rpm and 20 mm/min. Optimized FSP condition resulted in a significant improvement of tensile strength and elongation up to 22 and 8% of those of base metal, respectively.  相似文献   

10.
Abstract

Friction stir welding was applied to a 2 mm thick 304 austenitic stainless steel plate. The microstructural evolution and hardness distribution in the weld were investigated. The stir zone (SZ) and thermomechanically affected zone (TMAZ) showed dynamically recrystallised and recovered microstructures, respectively, which are typically observed in friction stir welds in aluminium alloys. The hardness of the SZ was higher than that of the base material and the maximum hardness was observed at the TMAZ. The higher hardness at the TMAZ was attributed to high densities of dislocations and subboundaries. Microstructural observations revealed that the ferrite was formed along grain boundaries of the austenite matrix in the advancing side of the SZ. It is suggested that the frictional heat due to stirring resulted in the phase transformation of austenite to ferrite and that upon rapid cooling the ferrite was retained in the SZ.  相似文献   

11.
(The microstructural refinement of cobalt-based alloy (Stellite No. 6) by laser cladding and friction stir processing (FSP) was studied. A nanometer-sized microstructure consisting of fine carbide (particle size: 100–200 nm) and a grain (grain size: 150–250 nm) was successfully fabricated by the FSP on the laser clad cobalt-based alloy. The nanostructured cobalt-based alloy (Stellite No. 6) had an extremely high hardness of about 750 HV.  相似文献   

12.
研究轧制态纯铝经搅拌摩擦加工后的微观组织、织构及硬度。采用EBSD技术表征横截面的微观组织及织构。结果表明:焊合区晶粒呈等轴的完全再结晶状。基材主要包含的织构组分有R、S及黄铜R,同时含有少量的铜型织构。在焊合区中心,主要的织构组分是平行于ND指向RD 70°方向的(111),这一区域的织构绕着ND顺时针旋转30°和逆时针旋转60°分别得到回退侧和前进侧距离此区域3 mm的织构。  相似文献   

13.
An improved method of friction stir processing (FSP) was introduced for the processing of AZ91 magnesium alloy specimens. This novel process was called “friction stir vibration processing (FSVP)”. FSP and FSVP were utilized to develop surface composites on the studied alloy while SiC nanoparticles were applied as second-phase particles. The effect of reinforcing SiC particles with different sizes (30 and 300 nm) on different characteristics of the composite surface was studied. The results indicated that the microstructure was refined and mechanical properties such as hardness, ductility, and strength were enhanced as FSVP was applied. Furthermore, it was concluded that the effect of reinforcing particles with a size of 30 nm on the microstructure and mechanical properties of the surface composite was more obvious than that of particles with a size of 300 nm. It was also found that mechanical properties and microstructure of FSV-processed specimens were improved as vibration frequency increased. The hardness value in the stir zone was about 157 MPa for the FSV-processed specimen at a vibration frequency of 50 Hz, while this value was around 116 MPa for the FSV-processed specimen at a vibration frequency of 25 Hz.  相似文献   

14.
采用搅拌摩擦加工(FSP)技术对铸态Mg-Zn合金进行表面处理,以提高其耐空蚀—腐蚀性能。使用SEM、EDS、XRD、显微硬度计观察和测定表面改性层的显微组织、元素分布、相组成和显微硬度,使用超声振动空蚀设备和电化学工作站研究其耐空蚀—腐蚀性能。结果表明:FSP技术能够细化和均匀铸态组织,消除成分偏析,提高材料表面硬度。FSP合金在人工海水中更易形成腐蚀产物膜,其保护性能更优,是FSP样品耐腐蚀性能提升的主要原因。铸态样品经FSP改性后硬度依然较低,故蒸馏水条件下的耐空蚀性能未获提升,但改性后合金良好的耐腐蚀性能提升了其在人工海水条件下的耐空蚀性能。  相似文献   

15.
The aim of present work is fabrication of Al/Al2Cu in situ nanocomposite by friction stir processing (FSP) as well as investigation of FPS parameters such as rotational speed, travel speed, number of FSP passes, and pin profile on the microstructure, chemical reaction, and microhardness of Al based nanocomposite. The Al2Cu particles were formed rapidly due to mechanically activated effect of FSP as well as high heat generation due to Al-Cu exothermic reaction. The microstructure of the nanocomposites consisted of a finer grained aluminium matrix (~15 µm), unreacted Cu nanoparticles (~40 nm), and reinforcement nanoparticles of Al2Cu. Irregular morphology of Al2Cu is attributed to the local melting during FSP. Pin diameter has a higher effect on the microstructure and hardness values. The hardness measurements exhibited enhancement by 57% compared with the base metal.  相似文献   

16.
The influence of multipass high rotating speed friction stir processing (FSP) on the microstructure evolution, corrosion behavior, and tensile properties of the stirred zone (SZ) was investigated by EBSD, TEM, SEM, electrochemical workstation and electronic universal testing machine. The mean grain size of the SZ is significantly refined, and it increases with the increase of the processing pass. In addition to an obvious increase in the number, the distribution of β-Al12Mg17 precipitates also becomes more uniform and dispersed with increasing the processing pass. Compared with the as-received AZ31 alloy, the tensile properties of the SZ are hardly improved, but the corrosion resistances are significantly enhanced. The corrosion potential of the SZ prepared by 4-pass FSP is increased from −1.56 V for the unprocessed AZ31 alloy to −1.19 V, while the corrosion current is decreased from 1.55×10−4 to 5.47×10−5 A.  相似文献   

17.
搅拌摩擦加工铸态铝铁合金的显微组织   总被引:1,自引:0,他引:1  
采用普通熔铸法制备含铁3%(质量分数)的铝铁二元合金,研究多道次往复搅拌摩擦加工(Friction stir processing,FSP)对合金显微组织的影响。结果表明:进行1~3道次往复FSP后,各道次加工区组织不均匀;随着加工道次的增加,组织均匀细化程度增大。合金铸态组织由α-Al和粗大针状Al3Fe相组成,经3道次FSP后,搅拌区组织明显细化。原始铸态组织转变为细小等轴的再结晶晶粒,尺寸为2~5μm,并且部分晶粒中出现层错;粗大的Al3Fe针状相被破碎成长度小于1μm的细小粒状,弥散分布在铝基体晶界和晶粒内部,细化的Al3Fe粒子呈现孪晶结构。  相似文献   

18.
Multipass friction stir processing (FSP) is an effective method to produce a homogeneous microstructure and enhance the mechanical properties of magnesium (Mg) alloys. However, few studies have concentrated on the variation of corrosion resistance of Mg alloys during multipass FSP. Electrochemical alternating current (AC) impedance, polarization behavior, hydrogen evolution, and corrosion morphology were used to investigate the effects of subsequent passes on the corrosion resistance of FSP AZ31 plates. A quasi‐in‐situ observation of the growth of corrosion products was carried out to further study the corrosion behaviors of FSP AZ31 alloy. It is found that subsequent passes could further reduce the grain size of FSP AZ31 alloy and result in an increase in the hardness compared with the first pass. Moreover, subsequent passes are beneficial to the improvement in the corrosion resistance of AZ31 alloy. Pitting corrosion occurs in FSP AZ31 plates, which has not changed after subsequent passes.  相似文献   

19.
Friction stir processing of AA6061-T4 alloy with SiC particles was successfully carried out.SiC particles were uniformly dispersed into an AA6061-T4 matrix.Also SiC particles promoted the grain refinement of the AA6061-T4 matrix by FSP.The mean grain size of the stir zone (SZ) with the SiC particles was obviously smaller than that of the stir zone without the SiC particles.The microhardness of the SZ with the SiC particles reached about HV80 due to the grain refinement and the distribution of the SiC particles.  相似文献   

20.
搅拌摩擦加工对铸态7075铝合金显微组织的影响   总被引:1,自引:0,他引:1  
刘峰超  马宗义 《金属学报》2008,44(3):319-324
采用搅拌摩擦加工对变形能力差的铸态7075铝合金进行改性加工,探讨了加工工艺对加工区显微组织的影响.加工工艺优化实验表明,在同样的工具设计和加工参数下,通过两道次重叠加工可在搅拌区获得均匀的细小等轴晶组织;此外,减小加工工具尺寸并提高旋转速度也可明显提高搅拌区显微观组织的均匀性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号