首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
为了提高直驱永磁风电并网逆变器直流侧电压的稳定,设计了一种二阶线性自抗扰(LADRC)的并网逆变器电压控制器。建立了三相PWM电压源型并网逆变器的数学模型,分析了其传统的双闭环PI控制方式,在此基础上设计了二阶LADRC控制器来代替传统的电压外环PI控制器,目的是使直流侧电压快速稳定,减小波动。分析了电压外环二阶LADRC控制器的设计原理,最后通过在Matlab/Simulink搭建1.5 MW直驱永磁风力发电机组仿真验证所设计控制器的有效性。结果表明,相对于传统的控制方式,所设计的二阶LADRC控制器电压的稳定速度更快,并网电流的总谐波畸变率(THD)更小。即使在电网电压发生扰动时,也能有一个良好的控制性能,提高了直流侧电压的抗干扰能力。  相似文献   

2.
针对风电并网逆变器直流母线电压易受电网电压波动和负载扰动影响的问题,文中提出了一种电压外环改进型线性自抗扰控制(LADRC)。首先建立了风电并网逆变器在d-q旋转坐标系下的数学模型,在此基础上,设计了基于降阶线性扩张状态观测器的线性自抗扰控制,减小了观测器的相位滞后,提高了系统的扰动观测精度;然后在观测器总扰动通道上增加了一个超前滞后的校正环节以减弱观测器的噪声放大效应;最后对改进型LADRC控制策略进行了频域特性分析。仿真结果表明,相比于传统LADRC控制策略,文中所提的控制策略对并网逆变器直流母线电压具有更好的控制效果。  相似文献   

3.
提出一种简化的鲁棒控制,以提高通过LCL滤波器连接到电网的三相电流控制电压源逆变器(VSI)的性能。LCL滤波器谐振的存在使控制系统的动态变得复杂并限制了其整体性能,特别是在考虑干扰和参数不确定性时。为解决这一问题,提出了一种基于线性自抗扰控制的鲁棒有源阻尼方法。通过使用Pade近似减少系统传递函数的阶数,对系统进行简化。仿真结果表明,在存在参数不确定性和外部干扰的情况下,提出的基于线性最优自抗扰控制(LADRC)的电流控制器实现了高功率质量和良好的动态性能。建立实验装置以验证所提控制策略的有效性和实用性。  相似文献   

4.
针对并网逆变器控制中传统电压电流双闭环控制策略抗扰能力不足的问题,构造线性自抗扰控制(LADRC)取代电压外环控制。为了提高线性扩张状态观测器(LESO)的观测精度,通过在LESO中引入直流母线电压微分与其观测值之间的误差项,对传统LADRC进行了改进。从频域分析上证明了改进型LADRC的跟踪性能和抗扰性能均优于传统LADRC。仿真结果表明,所提出的改进型LADRC可确保并网逆变器具有更好的稳态与暂态性能,特别是在电网电压跌落和负载突变方面具有优越性。  相似文献   

5.
针对永磁直驱风电系统并网逆变器中传统双闭环PI控制策略抗扰性能和控制精度不足的问题,提出一种基于非线性扩张状态观测器(NLESO)的改进型自抗扰控制(ADRC)技术用以提高直流母线电压的控制性能.通过将线性扩张状态观测器(LESO)中的误差增益矩阵变为随时间变化的非线性函数对传统LADRC进行了改进,提高了LESO的动...  相似文献   

6.
微网逆变系统具有非线性、强耦合、负载扰动强、并/离网模式切换灵活等特性,传统电压电流双环控制难以取得满意的控制效果。自抗扰策略将影响系统控制的不确定因素视为总和扰动予以估计和补偿,可将复杂系统校正为积分串联型以获取期望的控制性能。文中引入更具工程应用价值的线性自抗扰控制(LADRC)技术,设计以输出电压及其微分为状态变量的二阶LADRC。考虑到扩张状态观测器(ESO)是影响LADRC控制性能的核心环节,在ESO中引入输出电压误差微分项,以提高ESO的扰动观测能力;在总和扰动作用通道增加一阶惯性环节,避免观测带宽增加而引入噪声。对LADRC及典型双闭环控制系统的频率响应特性进行分析可知,改进后的LADRC较双环控制及传统LADRC具有更好的抗扰性能。仿真和实验结果证明了所提策略的有效性。  相似文献   

7.
三相逆变器系统是一个非线性、强耦合、负载扰动剧烈的系统,传统基于PI调节器的双环控制效果不尽人意。自抗扰控制(ADRC)将上述影响系统控制的不利因素视为总扰动,予以估计和动态补偿,然后施以合适误差反馈律,以获取理想的控制性能。针对三相逆变器交流电压控制问题,考虑到工程实用性,以交流电压及其一阶导数为状态变量设计二阶线性自抗扰控制器,并结合被控对象LC滤波器电感电流可测的特点,引入模型补偿项,以降低扩张状态观测器扰动观测压力,进一步提高自抗扰控制系统的跟踪精度。对传统自抗扰控制、模型补偿自抗扰控制和电压电流双环PI控制进行了对比实验,结果证明了所提策略在跟踪性能及抗扰性能方面的优势。  相似文献   

8.
扭振是造成风电机组传动系统零部件疲劳损伤的主要原因之一。为了通过控制减小风电机组传动系统疲劳载荷,本文在分析风电机组传动系统中非线性不确定因素作用的基础上,设计了一种扭振抑制自抗扰控制器。该控制器将传动系统中的非线性不确定因素作用和外界扰动归结为系统总扰动,通过扩张状态观测器进行实时估计,并在发电机转矩控制中给予补偿,增强了控制器的适应性和鲁棒性。以3MW双馈风电机组为控制对象的试验结果表明,该控制器可以在不影响机组发电量的前提下抑制传动系统扭振,明显减小齿轮箱的转矩波动,从而减轻扭转载荷对主要零部件的疲劳损伤。  相似文献   

9.
针对自抗扰控制策略在并网系统参数变化时能否维持逆变器接入弱电网的稳定性展开了进一步研究。首先,建立了计及频率耦合的自抗扰控制型并网逆变器等效单输入单输出序阻抗模型,并采用Nyquist稳定判据定量分析逆变器输出功率、电网短路比、锁相环以及自抗扰控制器参数变化对并网系统稳定性的影响。其次,针对上述参数变化所导致的弱电网下自抗扰控制型逆变器稳定性降低、宽频带振荡等问题,提出了一种改进线性扩张状态观测器(enhanced linear expansion state observer, e-LESO)的自抗扰控制宽频带振荡抑制方法。通过在传统一阶自抗扰控制器中LESO内部增添比例支路和滤波环节,重塑自抗扰控制型并网逆变器输出阻抗,拓宽其中频段(100 Hz~1 kHz)内呈正阻尼特性的频率范围,从而增强自抗扰型并网逆变器鲁棒性,实现宽频带振荡抑制。最后,通过仿真验证了所提方法的有效性。  相似文献   

10.
在永磁直驱风力发电并网系统中,通常将逆变器直流母线电压作为电压外环控制目标,由于测量误差及噪声的存在,常用惯性环节滤波后的母线电压作为反馈。在典型的电压外环自抗扰控制系统中,因未考虑滤波器的影响,使得控制反馈与实际系统输出存在幅值相位差异,进而影响系统控制性能。文章将通过一阶惯性环节滤波的信号扩张成新的状态变量,由改进的线性扩张状态观测器对滤波前母线电压进行估计并反馈,可消除因惯性环节导致的母线电压纹波。实验仿真表明,系统在观测噪声扰动和电网侧电压故障情况下具有较强的抗干扰性能。  相似文献   

11.
微网是一个非线性、强耦合、多约束、负载扰动大的系统,传统比例-积分(PI)双环控制已经无法满足需求,自抗扰技术通过补偿扰动可使微网逆变控制系统的性能显著改善。据此,文中提出了基于线性自抗扰控制(LADRC)的微网逆变器时-频电压控制策略。为了提高微网逆变器的抗扰性能和动态性能,在时域上,设计和分析了dq轴解耦环节、带电容电流反馈的降维扩张状态观测器以及线性状态误差反馈控制律;为了提高微网逆变器在各谐波频率处的跟踪精度和抗扰性能,分析了时域LADRC系统的频率响应特性,并据此设计和分析了频域上的实部/虚部解耦环节和时-频域LADRC策略。最后,针对工作在孤岛模式下的微网逆变器,对所提策略进行了实验验证。实验结果表明,与PI双环控制对比,基于LADRC的微网逆变器时-频电压控制策略具有更好的解耦、抗扰、动态性能,并能精确控制谐波电压以达到抑制谐波的效果。  相似文献   

12.
马燕  夏超英 《电气传动》2007,37(6):39-41
单级旋转倒立摆是一个单输入双输出、强非线性、强耦合的不稳定系统.应用自抗扰控制方法对其进行研究,利用状态观测器对系统的总扰动进行实时估计和补偿,实现了对摆的竖直偏角的良好控制.并且与LQR方法进行了对比,在改变研究对象的参数而不改变控制参数的情况下进行了仿真,结果表明自抗扰控制方法具有较强的鲁棒性.  相似文献   

13.
在永磁同步电动机伺服系统中,通常根据位置信号采用M法计算转速。由于位置信号存在量化误差等原因,计算转速存在测量噪声,因此常将滤波后的转速作为反馈。在传统的转速一阶自抗扰控制系统中,自抗扰控制器的设计过程并未考虑转速滤波环节的影响,这将使系统性能受滤波时间常数的影响。提出一种考虑反馈转速滤波环节的改进型自抗扰控制器,将滤波后的转速扩张为一个新状态量,利用三阶线性扩张状态观测器估计滤波之前的转速量,并将其作为反馈。实验结果表明,改进型自抗扰控制系统具有较好的控制性能。  相似文献   

14.
直流侧电压的稳定控制是保证有源电力滤波器(activepower filter,APF)正常工作的关键环节之一。对APF直流侧电压进行建模,在dq坐标系中分析了直流侧电压与d轴电流的数学关系,进而提出了APF直流侧电压自抗扰控制器的整体设计方法,给出了自抗扰控制器中的跟踪微分单元、扩张状态观测器和误差反馈单元的设计方法,并采用线性方法对该控制器进行优化,提高了响应速度与控制精度。仿真与试验结果验证了该设计方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号