首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
连续电驱动四足机器人腿部机构设计与分析   总被引:2,自引:0,他引:2  
柏龙  龙樟  陈晓红  江沛  陈锐  官渐 《机器人》2018,40(2):136-145
提出了一种四足机器人腿部的连续电驱动(即电机整周转动驱动腿部实现摆转跨步动作)方案,设计了一种具有由切比雪夫机构、五杆机构组成的2自由度双曲柄复合连杆机构的机器人腿部结构.分析了动物的足端轨迹特性,采用轨迹圆滑、无突变、导数连续的椭圆曲线规划了机器人足端运动轨迹.以规划的足端轨迹再现为优化目标,采用遗传算法与fmincon函数内点法计算得到了腿部机构杆长的最佳尺寸.在此基础上,建立了机器人仿真模型,通过Adams仿真分析了机器人腿部机构的足端运动特性,并研制了腿部结构性能测试平台.完成了单腿足端运动轨迹跟踪实验,验证了腿部结构设计方案的可行性.  相似文献   

2.
倪聪  杨崇倡  刘香玉  冯培  张春燕 《机器人》2020,42(4):436-447
结合球形和四足机器人两者优势,创新性地提出一种能适应多重作业环境的球腿复合移动机器人.在滚动模式下,对其进行直线滚动和侧滚转向分析,验证机器人转向的可行性.在四足模式下,以复数矢量法求得机器人足端坐标,并用Matlab绘制的足端轨迹曲线与Adams仿真曲线对比,验证了理论的正确性.以抬腿高度作为目标函数,由非线性规划算法求得足端轨迹最优解.采用质心投影法分析了机器人四足行走时的稳定性.建立仿真模型对机器人的四足直行、四足转向、四足爬坡和球体侧滚等运动模式进行仿真试验.同时,制作一台样机,验证了该机器人方案设计及各运动模式的可行性.  相似文献   

3.
针对深海爬游机器人足端轨迹规划问题,采用高阶多项式拟合的方法对其进行研究;首先,介绍了爬游机器人整体结构并对其进行运动学建模,结合爬游机器人运动学模型提出了一种直线与曲线相结合的机器人足端轨迹;其次,利用四阶多项式和六阶多项式分别对机器人足端轨迹进行拟合,比较两种拟合结果可知,六阶多项式拟合方法对机器人足端速度、加速度的规划效果更佳;利用六阶多项式轨迹拟合方法对多段轨迹连接点处的速度问题进行了分析,解决了机器人在运动过程中腿部抖动问题,使机械腿具有良好的控制柔顺性;最后,根据D-H法则建立机器人单腿仿真模型,通过仿真验证了算法的可行性,进一步在水池中利用机器人实物样机验证了算法的有效性.  相似文献   

4.
针对冗余液压驱动四足机器人运动学逆解问题,提出一种基于扩展雅可比矩阵的冗余液压驱动四足机器人运动控制方法.该方法既能解决冗余自由度带来的逆解多解问题,还能使机器人足端入地角度满足摩擦锥要求避免足端滑动.首先,规划机器人足端轨迹得到机器人足端速度,在分析机器人足端入地角度对机器人运动性能影响的基础上,结合机器人腿部结构几...  相似文献   

5.
目前研究的移动机器人运动跟踪控制系统控制过程易受到外界扰动影响,导致控制稳定性较差,运动跟踪准确性较差,为此,基于大数据聚类算法设计了一种新的移动机器人运动跟踪控制系统。硬件部分主控制器负责远程无线通讯,图像采集的数据传输和舵机驱动连接,驱动控制器为机器人行走提供动能保证;远程控制模块负责数据,图像和指令的传输;舵机控制模块机器人的行走、转向;软件部分首先通过大数据聚类的方法分析机器人移动步态,根据运动超声波传感器原理判定障碍物位置,考虑移动机器人运行状态与足端轨迹,构建机器人行走控制模型。通过髋关节调节机器人姿态,消除外部扰动对机器人姿态和运动速度的影响,得到抗扰动控制模型。实验结果表明,所设计系统在对机器人运动控制的稳定性及对抗外界扰动方法具有较好的性能,能够实现对移动机器人运动的准确跟踪。  相似文献   

6.
特种机器人运动轨迹规划及其实现   总被引:2,自引:0,他引:2  
研究了基于压力传感器的特种机器人足端轨迹规划策略及其实现;首先,采用基于Mallat小波快速算法对机器人足端压力传感器的输入信号进行去噪;其次,仿照动物的膝跳反射原理,提出了基于足端压力传感器信息反馈的落足反射式仿生六足机器人足端轨迹规划策略;在所提出的足端轨迹规划策略中,机器人落足点的位置不经过主控制器,而直接由信息处理子系统根据足端压力传感器的输出信息快速确定,从而减轻了主控制器的运算负担,提高了信息处理的实时性,使反应时间小于0.23s;最后,通过实验验证了所提出的多足式机器人足端轨迹规划策略的合理性和实效性。  相似文献   

7.
针对现有技术文献中广泛使用的多种静态稳定步态中速度稳定性与稳定裕度不可兼得的通病,在随动质心的静态步态基础上,利用参数化坐标变换矩阵方法规划出一种四足机器人前进过程中质心以曲线轨迹移动的静态步态方法,使该步态方法以连续性速度运动的过程中保证一定稳定裕度;通过D-H法求得四足机器人的逆运动学坐标变换矩阵,分别在三维空间中对四足机器人的四组足端轨迹方程进行规划,并带入MATLAB软件后以逆运动学方程计算出关节夹角驱动方程,利用步态规划图求出机器人四条腿各自对应的夹角驱动方程以及机体质心轨迹方程;最后在MSC.ADAMS软件中建立四足机器人虚拟样机并对规划的步态进行虚拟仿真,仿真结果验证了该步态对提升四足机器人对于速度连续性以及稳定裕度的提升。  相似文献   

8.
王琪  张秀丽  江磊  黄森威  姚燕安 《机器人》2022,44(3):257-266
为了探索脊柱运动对腿运动的增强机理,设计了具有2自由度铰接式躯干的仿猎豹四足奔跑机器人。对带腾空相的跳跃(bound)步态奔跑运动的力学过程进行描述,采用阻尼型弹性负载倒立摆(D-SLIP)模型建立了四足机器人动力学模型。依据猎豹的奔跑运动模式,对四足机器人脊柱关节与腿关节的耦合运动进行了轨迹规划。提出一种改进的粒子群优化(PSO)算法,解决了机器人脊柱关节驱动机构尺寸和运动轨迹控制参数之间目标互斥的嵌套优化问题。对四足机器人跳跃奔跑运动进行动力学仿真,结果表明:脊柱与腿的协调运动可以增大奔跑步幅,使机器人产生腾空相,从而提高机器人的奔跑速度。  相似文献   

9.
《计算机工程》2017,(4):292-297
仿生四足机器人腿部结构设计与生物腿部实际结构存在差异,足端与地面的刚性接触力对于控制其运动平稳和收敛会产生不利影响。为解决上述问题,分析德国牧羊犬骨骼结构,通过图像处理和分析手段获取牧羊犬对角小跑步态运动中四肢各关节的运动规律,设计一款四足机器人。该机器人足端具有转化足端与地面刚性接触为柔性接触的机构。根据正运动学和逆运动学理论分析模型足端工作空间。将仿真获得的受力曲线与实际受力曲线进行对比,结果表明,运动控制函数和柔性机构更有助于四足机器人的运动平稳。  相似文献   

10.
四足机器人对角小跑步态全方位移动控制方法及其实现   总被引:1,自引:0,他引:1  
为实现四足机器人在平面和斜坡上的全方位移动,提出了基于对角小跑步态的运动控制方法.基于所推导的四足机器人运动学方程和仿生步态规划方法,将机器人在平面内的运动解耦为前向运动、侧向运动和自转运动3部分以降低运动控制的复杂度.首先利用各部分振荡幅度来实现机器人在3个方向上的运动速度控制,然后利用将各部分运动合成实现四足机器人在水平面内的全方位移动控制;基于平面的全方位移动控制方法,对足端位置进行映射,实现了机器人在斜坡上的对角小跑步态全方位运动控制.最后,分别在平面和斜坡上进行了仿真和实际物理样机实验.步程计数据、仿真数据与物理样机实验结果之间的差别在可接受范围之内,证实了该方法有效地实现了机器人的速度控制和运动解耦,验证了所提出方法的正确性和有效性.  相似文献   

11.
Generating a robust gait is one of the most important factors to improve the adaptability of quadruped robots on rough terrains. This paper presents a new continuous free gait generation method for quadruped robots capable of walking on the rough terrain characterized by the uneven ground and forbidden areas. When walking with the proposed gait, the robot can effectively maintain its stability by using the Center of Gravity (COG) trajectory planning method. After analyzing the point cloud of rough terrain, the forbidden areas of the terrain can be obtained. Based on this analysis, an optimal foothold search strategy is presented to help quadruped robot to determine the optimum foothold for the swing foot automatically. In addition, the foot sequence determining method is proposed to improve the performance of robot. With the free gait proposed in this paper, quadruped robot can walk through the rough terrains automatically and successfully. The correctness and effectiveness of the proposed method is verified via simulations.  相似文献   

12.
针对现有的四足机器人对角小跑步态控制方法存在的机器人运动速度较慢、灵活性较差等问题,提出了一种基于虚拟模型的四足机器人对角小跑步态非线性控制方法。方法需要构建一个四足机器人模型,并在该模型的工作范围内建立一个平面直角坐标系,在不考虑机器人足端车轮滑动的情况下,将驱动四足机器人的运动方程转换成矩阵的形式,寻找有界输入平动线速度和转动角速度,使矩阵在其控制下产生的误差可以在大范围内保持稳定。求解该四足机器人在工作平面坐标系中姿态误差的微分方程,构造该微分方程的Lyapunov函数并对其求导,根据求导结果设计一个四足机器人驱动控制器,通过该驱动控制器实现对四足机器人的对角小跑步态非线性控制。仿真结果表明,所提方法能够在快速、灵活的情况下实现对四足机器人对角小跑步态的非线性控制,且鲁棒性较高,能够满足用户需求。  相似文献   

13.
In this paper, a general study on improving adaptability of quadruped walking and climbing robot in complex environment is presented. First, a sensing system composed of range and gyroscope sensors in a novel arrangement is developed. By combining the sensing signals and the internal state of the robot, the surface geometry of the environment is sufficiently reconstructed in real-time. Secondly, a planning algorithm for the robot to overcome the reconstructed environment is conducted. Based on the reshaped surface, the planning algorithm not only provides the exact body trajectory and foot positions but also the adaptability of the robot in a specific environment. A method to improve the adaptability of the walking and climbing robot is also introduced. Thanks to the adherent ability of the robot, the center of gravity of the robot is allowed to move outside the support polygon to increase the reach-ability of the next swing leg. Finally, the effectiveness of the proposed approach is verified by the performances of the experiments in complex environments using a quadruped walking and climbing robot named MRWALLSPECT IV.  相似文献   

14.
提出了一种基于反馈控制和贪婪决策的四足机器人爬行步态规划算法。该算法利用机载惯性传感器IMU(Inertial Measurement Unit)来实时计算零力矩点和姿态角,以稳态裕度为指标在支撑平面内实时规划期望零力矩点(Zero Moment Point,ZMP)轨迹,结合非线性反馈控制器实现对机体ZMP点的连续平滑调节,保证机器人在按给定速度矢量进行连续爬行的同时具有抵抗一定外力扰动的能力。步态规划采用动态步态周期,基于机器人结构约束和贪婪决策实现跨腿的自动触发,提高了步态自适应性。最终通过样机行走实验验证了所提算法应用于微型四足机器人中的可行性,机器人实现了在平坦地面上稳定地全向行走和旋转,所提算法同时兼顾了自适应性和稳定裕度。  相似文献   

15.
Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom. As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3D model for quadruped robot based on spring loaded inverted pendulum (SLIP) model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method.   相似文献   

16.
为解决四足机器人在其质心偏离躯干几何中心时的稳定性问题,提出了一种基于改进粒子群算法的优化方法.使用基于Hopf模型的振荡器搭建中枢模式发生器(central pattern generator,CPG)网络拓扑结构,通过对足端进行轨迹规划进而确定CPG模型相关参数,并对CPG单元间的耦合系数矩阵进行优化,使其能够输出...  相似文献   

17.
In this article, the method for increasing dynamic stability of quadruped robot is proposed. Previous researches on dynamic walking of quadruped robots have used only walking pattern called central pattern generator (CPG). In this research, different from walking generation with only CPG, a instinctive stability measure called landing accordance ratio, is proposed and used for increasing dynamic stability. In addition, dynamic balance control and control to adjust walking trajectory for increasing dynamic stability measure is also proposed. Proposed methods are verified with dynamic simulation and a large number of experiments with quadruped robot platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号