首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ergonomics》2012,55(12):1161-1177
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.  相似文献   

2.
This study uses a previously developed single-degree-of-freedom mechanical model to predict the power hand tool operator handle kinematic response to impulsive reaction forces (Lin, 2001). The model considers the human operator as a lumped parameter passive mechanical system, consisting of stiffness, mass moment of inertia, and viscous damping elements. Six power nutrunners were operated by 9 volunteers (3 men, 6 women) in the laboratory, and corresponding handle kinematics were compared against model predictions. A full-factorial experiment considered torque buildup time and work location. Normalized forearm flexor EMG was measured to quantify muscle exertions and used to proportionally adjust the stiffness parameter. The measured handle displacement for actual tool operation strongly correlated to the model predictions (R = .98) for all handle configurations. The overall model prediction error was 3% for predicting tool handle responses to impulsive reaction forces for various tool and workstation parameters. This model should make it possible for designers to identify conditions that minimize the torque reaction experienced by power hand tool operators.  相似文献   

3.
Pneumatic shut-off nut runners may produce large reaction forces to the operator's hand, especially at the end of the securing of threaded fasteners. These reaction forces depend on the shut-off mechanism, the joint hardness, tool torque level and to some extent the physical properties of the tool. The objective of this study was to find acceptability limits for the discomfort from pneumatic tool torque reaction forces that could be related to technical test measures of the tools.

In a study at a truck assembly industry 38 workers participated. Reaction forces, tool handle displacements and subjective discomfort ratings were measured. The tools were first tested according to ISO 6544 in the laboratory and the tool torque impulse was calculated. Strong correlations between tool handle displacements (r = 0.952), reaction forces (r = 0.981, vertical force) and ratings were found. Acceptability limits for ratings, tool handle displacements and reaction forces were also determined. No subject would accept to work a whole workday at a discomfort level over 9 on a 20-point scale and all would work a whole workday at a discomfort level of 2. These limits could then be correlated to the tool torque impulse measures from the technical test, thus making it possible to predict how many of the assemblers would work within acceptance limits.  相似文献   


4.
The objective of this study is to investigate the workstation and tool effects on the responses of the powered hand tool operator reacting against the impulsive reaction forces that may be associated with upper extremity musculoskeletal disorders. The study demonstrated a means of direct measurement of force at the interface between the tool and the operator. Fifteen experienced male operators performed three independent work configurations: pistol grip and right angle tools used on the horizontal surface and pistol grip tools used on the vertical surface, in the laboratory. A full factorial experiment consisting of 36 conditions was designed to examine the effects of working height, distance, tool, and fastener joint hardness on handle displacement and grip forces. The results indicate that operator responses were affected by different factors depending on the work configuration. When pistol grip tools were used on the vertical surface, the mean handle displacement decreased from 9.9 degrees to 7.3 degrees as the working height increased from 30 cm below shoulder to 30 cm above shoulder. When right angle tools were used, the greatest handle displacement (51.1mm) and grip force (84.7% MVC) during torque reactions were measured at 30 cm below elbow and 40% forward reach away from the operator. This study provides quantitative information that can be used for workstation design and tool selection to reduce the torque reaction experienced by powered nutrunner operators.  相似文献   

5.
Powered hand tools produce reaction forces that may be associated with upper extremity musculoskeletal disorders. The handle displacement, grip force and upper limb muscle activity (electromyography (EMG)) due to the effects of operator experience, working height and distance, type of tool and fastener joint hardness were measured in this study with 15 experienced and 15 novice nutrunner users. The results show that when pistol grip handles were used to work on a horizontal surface, experienced users allowed an average handle displacement of 7.9 degrees, while novice users allowed 11.5 degrees. Average EMG scaled by reference voluntary contraction (RVC) at forearm flexors, forearm extensors and biceps were greater for experienced users (318% RVC, 285% RVC, 143% RVC, respectively) than for novice users (246% RVC, 219% RVC, 113% RVC, respectively). Experienced users exerted more grip force than novice users when using right angle handles, but less force when using pistol grip handles. The results suggest that it is possible to minimize tool handle displacement by adapting the workplace layout to permit different working postures for each user group.  相似文献   

6.
《Ergonomics》2012,55(6):859-876
Powered hand tools produce reaction forces that may be associated with upper extremity musculoskeletal disorders. The handle displacement, grip force and upper limb muscle activity (electromyography (EMG)) due to the effects of operator experience, working height and distance, type of tool and fastener joint hardness were measured in this study with 15 experienced and 15 novice nutrunner users. The results show that when pistol grip handles were used to work on a horizontal surface, experienced users allowed an average handle displacement of 7.9°, while novice users allowed 11.5°. Average EMG scaled by reference voluntary contraction (RVC) at forearm flexors, forearm extensors and biceps were greater for experienced users (318% RVC, 285% RVC, 143% RVC, respectively) than for novice users (246% RVC, 219% RVC, 113% RVC, respectively). Experienced users exerted more grip force than novice users when using right angle handles, but less force when using pistol grip handles. The results suggest that it is possible to minimize tool handle displacement by adapting the workplace layout to permit different working postures for each user group.  相似文献   

7.
Lin JH  McGorry RW  Maikala RV 《Ergonomics》2012,55(3):361-370
Repetitive use of hand-held power tools is associated with work-related upper extremity musculoskeletal disorders. Using a pneumatic nutrunner, 21 men completed twelve 360 repetitive fastener-driving sessions on three joints (hard, soft and control) at slow and fast pace, and two different work:rest patterns. Handgrip force and perceived exertions were collected throughout each session. For the control joint, the mean grip force exerted was 39.6% of maximum voluntary exertion (MVE) whereas during hard and soft joint sessions it was 48.9% MVE and 56.9% MVE, respectively. Throughout each session, the grip force decreased, more while operating soft and hard joints as compared with the control joint (regression slope: ?0.022 and ?0.023, compared with ?0.007 N/drive, respectively), suggesting considerable upper extremity muscular effort by participants during torque buildup. Fast work pace resulted in higher average grip forces by participants but a greater decrease in the force as the session progressed. Providing rest breaks reduced perceived exertions. The findings gain additional knowledge for assembly task design to possibly reduce the hand/arm injury risks for the operator.

Practitioner Summary: Powered hand tools are widely used in assembly and manufacturing industries. However, the nature of their repetitive use on human operator biomechanical and perceptual responses is not fully understood. This study examined work-related risk factors such as joint torque, pace and work:rest ratios on powered hand tool performance.  相似文献   

8.
《Ergonomics》2012,55(2):188-206
This study used a computer-controlled electric right angle nutrunner to investigate the relative effects of different power hand tool and process parameters on operator muscular exertions, handle stability and subjective ratings of perceived exertion. Target torque (25, 40 and 55 Nm), torque build-up time (35, 150, 300, 500 and 900 ms), and workstation orientation (horizontal and vertical) were studied. Dependent variables included EMG activity of the finger flexors, biceps, and triceps, handle velocity and displacement, work done on the tool-hand system and power involved in doing work, subjective ratings of perceived exertion, and task acceptance. Six inexperienced subjects (three females and three males) participated. Ten replications were performed for each combination of experimental conditions. The consequences of increasing the torque reaction force were greater handle instability and perceived exertion. The effect of torque buildup time on handle kinematics, muscular activity and perceived exertion was not monotonic. Among five build-up times tested, the hand was most unstable (greater peak handle velocity and power against the operator) for a 150 ms buildup time. Greater peak handle displacement, total work against the operator and average EMG were observed for 150 and 300 ms build-up times than for other build-up time conditions. Integrated EMG and EMG latency significantly increased as build-up time increased. Average EMG latency between the onset of EMG burst and the onset of torque build-up was 40 ms for a 35 ms build-up time and 330 ms for a 900 ms build-up time. Subjective ratings of perceived exertion were the least when torque build-up time was 35 ms, however greater peak torque variance was associated with this condition.  相似文献   

9.
In pushing and pulling wheeled carts, the direction of force exertion may, beside the force magnitude, considerably affect musculoskeletal loading. This paper describes how force direction changes as handle height and force level change, and the effects this has on the loads on the shoulder and low back. Eight subjects pushed against or pulled on a stationary bar or movable cart at various handle heights and horizontal force levels while walking on a treadmill. The forces at the hands in the vertical and horizontal direction were measured by a force-transducer. The forces, body movements and anthropometric data were used to calculate the net joint torques in the sagittal plane in the shoulder and the lumbosacral joint. The magnitudes and directions of forces did not differ between the cart and the bar pushing and pulling. Force direction was affected by the horizontal force level and handle height. As handle height and horizontal force level increased, the pushing force direction changed from 45 degrees (SD 3.3 degrees) downward to near horizontal, while the pulling force direction changed from pulling upward by 14 degrees (SD 15.3 degrees) to near horizontal. As a result, it was found that across conditions the changes in force exertion were frequently reflected in changes in shoulder torque and low back torque although of a much smaller magnitude. Therefore, an accurate evaluation of musculoskeletal loads in pushing and pulling requires, besides a knowledge of the force magnitude, knowledge of the direction of force exertion with respect to the body.  相似文献   

10.
Powered hand tools have the potential to produce reaction forces that may be associated with upper extremity musculoskeletal disorders. In this study, subjective ratings of discomfort and acceptability of reaction forces were collected in an attempt to identify their associations with factors such as work location, and response covariates such as grip force and tool handle displacement. Three work configurations using pistol grip and right angle pneumatic nutrunners on horizontal and vertical surfaces were set up in the laboratory. Twenty healthy right-handed male participants operated four tools at nine locations and the corresponding subjective responses were collected. The results indicate that normalized grip force during the torque buildup period was a significant factor for both subjective ratings. For the unacceptable torque reactions across the three tool configurations, the ratio of hand moment impulse over tool torque impulse was significantly greater than for the acceptable reactions. For pistol grip tools used on the vertical surface, as the working height increased 30 cm, the odds of an unacceptable rating over an acceptable rating increased 1.6 times. Prediction models for subjective ratings of discomfort and acceptability provide insight regarding either workstation design or exposure control. These models can further be used to establish exposure limits based on handle displacement and grip force.  相似文献   

11.
This study investigated manual forces associated with trigger start (TS) and push to start (PTS) activation in‐line electric screwdriver designs. The vertically directed axial screwdriver force transmitted with the driver to the fastener and the grip/finger forces on the driver handle were measured from 13 employees in an electronics assembly manufacturing facility. The PTS driver was associated with significantly ( p < .01) higher axial force than the TS driver at two of the four workstations, where the difference was as high as a 184% increase (36.5 vs. 103.8 N). Total finger force on the screwdriver handle was also higher for the PTS screwdriver ( p < .01). The PTS screwdriver may reduce instances of fastener head damage (“cam out”) by requiring a minimum level of axial force to ensure better contact between the screwdriver bit and the fastener. However, this appears to come at the expense of greater manual forces exerted by the operator. © 2007 Wiley Periodicals, Inc. Hum Factors Man 17: 367–382, 2007.  相似文献   

12.
《Ergonomics》2012,55(3):377-390
In pushing and pulling wheeled carts, the direction of force exertion may, beside the force magnitude, considerably affect musculoskeletal loading. This paper describes how force direction changes as handle height and force level change, and the effects this has on the loads on the shoulder and low back. Eight subjects pushed against or pulled on a stationary bar or movable cart at various handle heights and horizontal force levels while walking on a treadmill. The forces at the hands in the vertical and horizontal direction were measured by a forcetransducer. The forces, body movements and anthropometric data were used to calculate the net joint torques in the sagittal plane in the shoulder and the lumbosacral joint. The magnitudes and directions of forces did not differ between the cart and the bar pushing and pulling. Force direction was affected by the horizontal force level and handle height. As handle height and horizontal force level increased, the pushing force direction changed from 45° (SD 3.3°) downward to near horizontal, while the pulling force direction changed from pulling upward by 14° (SD 15.3°) to near horizontal. As a result, it was found that across conditions the changes in force exertion were frequently reflected in changes in shoulder torque and low back torque although of a much smaller magnitude. Therefore, an accurate evaluation of musculoskeletal loads in pushing and pulling requires, besides a knowledge of the force magnitude, knowledge of the direction of force exertion with respect to the body.  相似文献   

13.
《Ergonomics》2012,55(1):146-159
The aim of this work was to investigate physiological responses to torque reaction forces produced by hand-held power tools used to tighten threaded fasteners. Such tools are used repetitively by workers in many industries and are often associated with upper limb musculoskeletal complaints. The tools considered for stimulation in this study had straight handles and required from 100 to 400 ms to tighten fasteners to a peak torque of 1.0 to 2.5 Nm and from 50 to 150 ms for the torque to decay to zero. A tool stimulator was constructed to apply a programmed torque profile to a handle similar to that of a straight in-line power screwdriver. Wrist flexor and extensor surface EMGs and handle position were recorded as subjects held handles subjected to controlled torque loads that tended to flex the wrist. It was found that: (1) very high EMG values occurred even though torques were of short duration (50 to 600 ms) and the peak torques were low (7–28% of maximum strength); (2) high EMGs in anticipation of torque are directly related to torque build-up rate and peak torque; (3) high peak flexor and extensor EMGs during and following torque onset are related to torque build-up rate and peak torque; (4) minimum time of peak EMGs of 72–87 ms following the onset of torques with 50 ms build-up suggests the contribution of an extensor muscle stretch reflex component; delayed peak for longer build-ups suggests a central control of muscle force in response to torque; (5) angular excursions of handles increase with decreasing torque build-up time and increasing torque magnitude causes increasing eccentric work; (6) the results show that the slow torque build-up times (450 ms) correspond to minimum peak EMGs; and (7) accumulated EMGs increase with increasing torque and torque build-up times. Further studies are needed to evaluate fatigue and musculoskeletal injuries associated with prolonged periods of tool use.  相似文献   

14.
Sesto ME  Radwin RG  Richard TG 《Ergonomics》2005,48(7):807-820
Dynamic mechanical response parameters (stiffness, damping and effective mass), physiological properties (strength and swelling) and symptoms of the upper limb were measured before power tool operation, immediately following and 24 h after power tool operation. Tool factors, including peak torque (3 Nm and 9 Nm) and torque build-up time (50 ms and 250 ms), were controlled in a full factorial design. Twenty-nine inexperienced power hand tool users were randomly assigned to one of four conditions and operated a pistol grip nutrunner four times per min for 1 h in the laboratory. Isometric strength decreased immediately following tool use (15%) (p < 0.01) and 24 h later (9%) (p < 0.05). Mechanical parameters of stiffness (p < 0.05) and effective mass (p < 0.05) were affected by build-up time. An average decrease in stiffness (43%) and effective mass (57%) of the upper limb was observed immediately following pistol grip nutrunner operation for the long (250 ms) build-up time. A previously developed biomechanical model was used to estimate handle force and displacement associated with the tool factors in the experiment. The conditions associated with the greatest predicted handle force and displacement had the greatest decrease in mechanical stiffness and effective mass, and the greatest increase in localized discomfort.  相似文献   

15.
Robot arms driven by bi-articular and mono-articular muscles have numerous advantages. If one muscle is broken, the functionality of the arm is not influenced. In addition, each joint torque is distributed to numerous muscles, and thus the load of each muscle can be relatively small. This paper addresses the problem of muscle control for this kind of robot arm. A relatively mature control method (i.e. sliding mode control) was chosen to get joint torque first and then the joint torque was distributed to muscle forces. The muscle force was computed based on a Jacobian matrix between joint torque space and muscle force space. In addition, internal forces were used to optimize the computed muscle forces in the following manner: not only to make sure that each muscle force is in its force boundary, but also to make the muscles work in the middle of their working range, which is considered best in terms of fatigue. Besides, all the dynamic parameters were updated in real-time. Compared with previous work, a novel method was proposed to use prediction error to accelerate the convergence speed of parameter. We empirically evaluated our method for the case of bending-stretching movements. The results clearly illustrate the effectiveness of our method towards achieving the desired kinetic as well as load distribution characteristics.  相似文献   

16.
Lin JH  Radwin RG  Richard TG 《Ergonomics》2001,44(3):295-312
The study considers the dynamic nature of the human power handtool operator as a single degree-of-freedom mechanical torsional system. The hand and arm are, therefore, represented as a single mass, spring and damper. The values of these mechanical elements are dependent on the posture used and operator. The apparatus used to quantify these elements measured the free vibration frequency and amplitude decay of a known system due to the external loading of the hand and arm. Twenty-five subjects participated in the investigation. A full factorial experiment tested the effects on the three passive elements in the model when operators exerted maximum effort for gender, horizontal distance (30, 60, 90 cm), and vertical distance (55, 93, 142 190 cm) from the ankles to the handle. The results show that the spring element stiffness and mass moment of inertia changed by 20.6 and 44.5% respectively with vertical location (p<0.01), and 23.6 and 41.2% respectively with horizontal location (p<0.01). Mass moment of inertia and viscous damping for males were 31.1 and 38.5% respectively greater than for females (p<0.01). Tool handle displacement and hand force during torque build-up can, therefore, be predicted based on this model for different tool and workplace parameters. The biomechanical model was validated by recalling five subjects and having them operate a power handtool for varying horizontal distances (30, 60, 90 cm), vertical distances (55, 93, 142 cm), and two torque build-up times (70, 200 ms). Tool reaction displacement was measured using a 3D-motion analysis system. The predictions were closely correlated with these measurements (R = 0.88), although the model underpredicted the response by 27%. This was anticipated since it was unlikely that operators used maximal exertions for operating the tools.  相似文献   

17.
Reaction forces, hand-arm displacement, muscle activity and discomfort ratings were studied during the securing of threaded fasteners with three angle nutrunners with different shut-off mechanisms, but with the same spindle torque (72-74 Nm). The three tools were tested according to the method specified in ISO 6544. One of the tools had an almost instantaneous shut-off. Another had a more slowly declining torque curve. For the third tool the maximum torque was maintained for a while before shut-off. Twelve male subjects participated in the study. A force platform measured the reaction force between the subject and the floor. The option of the hand-arm system and the shoulder was measured with an optoelectronic measuring system. The muscle activity (EMG) in six muscles in the arm and shoulder was measured with surface electrodes. Significant differences in the arm movements and ground reaction forces were found between the three tools. The smallest values were found with the fast shut-off tool while the delayed shut-off tool caused the largest values. The EMG measures gave inconsistent response patterns. Discomfort ratings were highly correlated with the time for which the tool torque exceeded 90% of peak preset torque, but the time for which the tool torque exceeded 90% of peak calculated by the method specified in ISO 6544. Nutrunners with a shut-off mechanism that causes a slowly decreasing torque or a torque that is maintained for a while before shut-off should be avoided. If no substitutes are available, then a torque reaction bar should be mounted on the tool.  相似文献   

18.
Ergonomic studies often use worker estimated hand force reproduced on a dynamometer to quantify force exposures but this method has not been well-studied in real work settings. This study evaluated the validity of worker estimates of hand force in a field study and determined the misclassification of worker estimated hand force exposures compared to directly measured forces. Eight experienced sheet metal assemblers completed ¼-inch diameter fastener installations using 6 different pneumatic tools. Grip forces were recorded by a pressure mat and were compared to worker estimated forces demonstrated on a dynamometer. Directly measured and worker estimated readings showed moderate correlations (0.53–0.67) for four installation tools and fair to moderate for two tools. The coefficient for variation of force estimates was 65% within repeated subject trials and 78% between averaged subject trials but 69% between subject trials during actual tool installations. Misclassification of worker estimated exposures varied by two cut-points: 29% using 4.0 kg and 49% using 6.0 kg. The force match procedure may provide adequate differentiation of high and low exposures in some settings, but is likely to result in substantial misclassification in other settings.  相似文献   

19.
《Ergonomics》2012,55(7):807-820
Dynamic mechanical response parameters (stiffness, damping and effective mass), physiological properties (strength and swelling) and symptoms of the upper limb were measured before power tool operation, immediately following and 24?h after power tool operation. Tool factors, including peak torque (3 Nm and 9 Nm) and torque build-up time (50?ms and 250?ms), were controlled in a full factorial design. Twenty-nine inexperienced power hand tool users were randomly assigned to one of four conditions and operated a pistol grip nutrunner four times per min for 1?h in the laboratory. Isometric strength decreased immediately following tool use (15%) (p?<?0.01) and 24?h later (9%) (p?<?0.05). Mechanical parameters of stiffness (p?<?0.05) and effective mass (p?<?0.05) were affected by build-up time. An average decrease in stiffness (43%) and effective mass (57%) of the upper limb was observed immediately following pistol grip nutrunner operation for the long (250?ms) build-up time. A previously developed biomechanical model was used to estimate handle force and displacement associated with the tool factors in the experiment. The conditions associated with the greatest predicted handle force and displacement had the greatest decrease in mechanical stiffness and effective mass, and the greatest increase in localized discomfort.  相似文献   

20.
To balance the contradiction between higher flexibility and heavier load bearing capacity, we present a novel deformable manipulator which is composed of active rigid joints and deformable links. The deformable link is composed of passive spherical joints with preload forces between socket-ball surfaces. To estimate the load bearing capacity of a deformable link, we present a static force-based model of spherical joint with preload force and analyze the static force propagation in the deformable link. This yields an important result that the load bearing capacity of a spherical joint only depends on its radius, preload force, and static friction coefficient. We further develop a parameter estimation method to estimate the product of preload force and static friction coefficient. The experimental results validate our model. 80.4% of percentage errors on the maximum payload mass prediction are below 15%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号