首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
通过计算水泥土挡土墙周围的渗流场,研究了墙侧水压力的变化规律.结果表明水压力系数沿高程并非常数,且受到墙侧土层分布及其相对透水性、墙基土的透水性和下卧不透水层埋深等因素的严重影响.总体来说,考虑渗流时墙后的侧压力总小于不考虑渗流时的相应值,且当墙前的被动土压力系数较小时,考虑渗流时该侧的侧压力则大于不考虑渗流时的相应值,因此,这种情况有利于挡土墙的稳定.  相似文献   

2.
渗流引起的水压力及对水泥土挡土墙的影响   总被引:3,自引:0,他引:3  
通过计算水泥土挡土墙周围的渗流场,研究了墙侧水压力的变化规律。结果表明:水压力系数沿高程并非常数,且受到墙侧土层分布及其相对透水性、墙基土的透水性和下卧不透水层埋深等因素的严重影响。总体来说,考虑渗流时墙后的侧压力总小于不考虑渗流时的相应值,且当墙前的被动土压力系数较小时,考虑渗流时该侧的侧压力则大于不考虑渗流时的相应值。因此,这种情况有利于挡土墙的稳定。  相似文献   

3.
基于挡土墙墙背俯斜、粗糙且填土表面倾斜的情况,以粘性填土为研究对象,用静力平衡方法研究了挡土墙后滑动土楔体达到极限平衡状态时作用于墙背的土压力,提出了主动土压力和被动土压力的一般形式.一般形式的提出,使朗肯土压力理论和库伦土压力走向统一,使经典土压力理论得以完善,使挡土墙工程设计时的计算更加便捷.  相似文献   

4.
挡土墙后土体拱效应分析   总被引:25,自引:1,他引:25  
考虑墙土摩擦角对挡土墙后土体滑裂面倾角的影响,对小主应力拱形状进行了理论分析.根据土拱形状计算平均竖直应力,由此得到了对应不同内摩擦角和墙土摩擦角的侧土压力系数,将其用于水平微分单元法求解挡土墙主动土压力,得到了挡土墙主动土压力强度、土压力合力和合力作用点的理论公式,并与库仑土压力理论和模型试验数据进行了比较分析.结果表明,挡土墙主动土压力强度为非线性分布,与模型试验结果基本吻合;土压力合力与库仑土压力合力相等.  相似文献   

5.
综述了挡士墙土压力的研究现状,采用有限元分析软件ANSYS,模拟刚性挡土墙在土压力作用下平移的过程,分析土压力分布规律,研究刚性挡土墙位移对土压力的影响,得出了挡土墙主动土压力分布为凸曲线的主要结论。  相似文献   

6.
建立在半无限土体假定上的朗肯土压力理论和库伦土压力理论,在挡土墙后填土有限的情况下不再适用。针对墙后无黏性填土,采用离散元方法分别对光滑、粗糙墙面平动模式下墙后有限宽度土体主动破坏的过程进行研究,分析了挡土墙运动过程中滑裂带发展、土体位移规律以及墙后水平土压力分布的情况。研究结果表明,墙体光滑情况下,滑裂带呈直线,墙后填土宽高比较小时,可以观察到滑裂带的反射,墙后土体呈多折线破坏模式,滑裂带倾角基本与库伦理论滑裂带倾角相等,且与土体宽高比无关,水平土压力合力受土体宽高比影响亦不大。墙体粗糙情况下,滑裂带呈曲线,反射现象随墙体粗糙程度增加而减弱,滑裂带倾角随土体宽高比增大而减小,最终落于库伦理论滑裂带内侧。此时,存在一临界宽高比,当墙后土体宽高比小于此值时,主动土压力随宽高比增大而增大,大于此值时,主动土压力不受宽高比影响。而无论墙体粗糙与否,墙后土体宽高比越小,达到极限状态所需墙体位移均越小。  相似文献   

7.
绕墙底向外转动刚性挡土墙的土压力计算   总被引:2,自引:0,他引:2  
针对绕墙底向外转动的刚性挡土墙,提出了一种简单可行的土压力计算方法。根据墙后土体的渐进破坏机理,建立了填土内摩擦角及墙土接触面上外摩擦角的发挥与土体位移的非线性关系,其中土体初始内摩擦角根据初始应力条件确定。采用改进的库仑主动土压力公式计算各转角下的土压力分布,得到了土压力合力大小及合力作用点的计算公式。算例分析表明,在不同转角下土压力强度、合力大小以及作用点的计算值与实测值接近,表明该计算方法可用于绕墙底向外转动位移模式下挡土墙的设计及验算。  相似文献   

8.
针对位移效应刚性挡土墙墙后被动土压力的分布特点及规律,引入了内外摩擦角与位移之间的关系公式,得出了最危险滑动面倾角的计算公式。分析了能量法在计算挡土墙土压力中的应用,并对能量法提出的土压力计算公式进行了改进。把改进后的计算值和未改进过的计算值分别与实际值比较,结果表明,改进后的计算公式得出的计算值更符合实际情况。  相似文献   

9.
目的推导挡土墙浸水情况下的滑动稳定系数的变化公式,分析凸榫对挡土墙抗滑移的作用.方法用库仑土压力理论和朗肯土压力理论对沈大高速公路某段重力式挡土墙因墙后浸水而产生滑移破坏进行受力分析.结果路基由于排水不畅形成的瞬时水位对挡土墙的滑移影响很大,随着水位的提高该挡土墙的滑动稳定系数很快低于允许值.结论凸榫前产生的被动土压力可以显著提高挡土墙抗滑能力,从而可以有效解决路基由于排水不畅形成的瞬时水位使挡土墙产生的滑移破坏.  相似文献   

10.
为了能够用较简单的数值公式模拟挡土墙变位后的土压力分布,并能较好地反映试验实测结果,根据土体微分单元体的静力平衡条件,建立了挡土墙绕墙顶转动情况下被动土压力分布的计算表达式;同时进行了被动土压力合力、作用点与库仑土压力及实测结果的分析比较.公式很好地反映了实测曲线的非线性分布,同时被动土压力合力与库仑被动土压力基本相同,合力作用点接近于0.27倍墙高处.可以供设计参考使用。  相似文献   

11.
对高为33~55 m的双面加筋土挡墙进行离心模拟试验,测得的面板上土压力分布从上至下呈先增后减型。基于加筋土挡墙的破坏模式,对于面板侧向土压力分布进行探讨。综合分析本次试验结果和现场测试,从理论上分析了加筋土挡墙面板上侧向土压力的分布,并对目前《公路加筋土工程设计规范》中基于侧向土压力进行设计的方法提出质疑。  相似文献   

12.
In order to study the engineering behaviors of reinforced gabion retaining wall, laboratory model test was carried out. Cyclic load and unload of five levels (0–50, 0–100, 0–50, 0–200 and 0–250 kPa) were imposed. Vertical earth pressure, lateral earth pressure, deformation behaviors of reinforcements, potential failure surface and deformation behaviors of wall face were studied. Results show that vertical earth pressure is less than theoretical value, the ratio of vertical earth pressure to theoretical value increases nearly linearly with increasing load, and the correlation coefficient of regression equation is 0.92 for the second layer and 0.79 for the fifth layer. The distribution of lateral earth pressure along the wall back is nonlinear and it is less than theoretical value especially when the load imposed at the top of retaining wall is large. Therefore, reinforced gabion retaining wall will be in great safety when current method is adopted. The deformation behaviors of reinforcements both in the third layer and the fifth layer are single-peak distributions, and the position of the maximum strain is behind that determined by 0.3H (Here H refers to the height of retaining wall) method or Rankine theory. Lateral deformation of wall face increases with increasing load, and the largest lateral deformation occurs in the fourth layer, which lead to a bulging in the middle of wall face.  相似文献   

13.
在刚性挡土墙后设置柔性垫层能有效减小墙背土压力。聚苯乙烯土工泡沫(EPS)是一种常见的柔性材料,具有受力易压缩的特性。通过开展室内挡土墙模型箱试验,对铺设不同弹性模量以及不同厚度的EPS板的各工况下墙背土压力分布规律进行了研究,详细分析了弹性模量和厚度对EPS板在不同填土表面荷载作用下的减压性能的影响;并通过FLAC3D建立有限差分数值模型,对不同压缩量情况下土压力分布规律进行了分析。研究结果表明:EPS板能有效地减小挡土墙墙后土压力;EPS板的弹性模量越小、厚度越大、墙后填土表面的外荷载越大,EPS板的减压效果越明显;EPS板厚增加到一定程度后,EPS板的减压效果不会再有明显提升,EPS板厚达到0.1倍墙高即可获得最佳减压效果。  相似文献   

14.
为了研究不同侧向预应力水平及竖向荷载对预应力悬锚式挡土墙墙背土压力、锚定板板前土压力、墙身剪应力分布特性的影响规律,设计了室内模型试验及数值模型并对悬锚式挡土墙受力特性进行测试与计算分析。研究结果表明:侧向预应力作用下,挡土墙墙背土压力呈抛物线分布并在锚杆处呈现峰值,锚定板板前土压力沿板宽度方向呈“马鞍型”分布并以约35°角向两侧扩展,锚定板板前土压力沿锚索轴向的压缩影响范围约2倍板宽;竖向荷载作用下,挡土墙侧向土压力呈“S”形分布,靠近挡墙底板位置处墙体剪应力急剧增大,应加强该类挡土墙根部配筋设计。结论可为预应力悬锚式挡土墙在公路建设中的推广和应用提供借鉴。  相似文献   

15.
在滑动楔体上沿竖向取水平薄层作为微分单元体,通过作用在单元体上的水平力、竖向力及地震力,建立挡土墙主动土压力基本方程,结合滑楔体力矩平衡条件,得到对应不同地震系数的侧压力系数,将其用于水平微分单元法,得到了地震荷载作用下挡土墙主动土压力理论公式.分析地震系数对土侧压力系数和土压力的影响,结果表明,土侧压力系数随水平地震系数增加而增大;当竖向地震系数小于零时,土侧压力系数随竖向地震系数增大而减小,当竖向地震系数大于零时,土侧压力系数随竖向地震系数增大而增大;随着竖向地震系数的增大,水平土压力强度最大值逐渐减小,随着水平地震系数的增大,水平土压力强度最大值先递减后增大;随着竖向及水平地震系数的增大,水平土压力最大值位置向墙顶方向移动,靠近墙底处土压力强度相对减小,靠近墙顶处土压力强度相对增大.  相似文献   

16.
挡土墙土压力非线性分布的计算方法研究   总被引:3,自引:0,他引:3       下载免费PDF全文
基于数学方法对斜单元体进行力和力矩的平衡分析,得到了墙背粗糙且填土坡面倾斜情况下的土压力解析解,并进一步分析了填土坡面倾角对土压力的影响。对比分析表明:经典朗肯土压力理论可看作是解析解在墙背光滑、填土坡面水平情况下的特例;在填土内摩擦角一定时,挡土墙墙后滑动楔体的极限破裂角随着填土坡面倾角或墙土之间摩擦角的增大而减小。基于解析解得到的土压力分布呈现明显的非线性特征,且在填土面水平情况下挡土墙墙脚处的土压力为0,这与实测数据取得了很好的一致。分析还表明,随着填土坡面倾角的增大,墙脚处的土压力不再接近0反而越来越大。文中的求解方法还可进一步拓展至探求填土为粘性土情况下挡土墙上土压力的解析解。  相似文献   

17.
计算重力式挡土墙主动土压力的传统方法如郎肯理论、库伦理论均将挡土墙视为平面问题来研究,但实际上挡土墙墙背填土主动土压力具有空间特性。文中对重力式挡土墙主动土压力的计算从平面问题和空间问题两方面进行了理论分析。实例的数值计算结果表明,按平面问题计算的重力式挡土墙的主动土压力比按空间问题计算的主动土压力较为保守,但按空间问题计算的主动土压力较按平面问题计算的主动土压力也存在安全富余量偏小的问题。  相似文献   

18.
在研究土压力与挡墙位移关系时,可采用数学拟合方法表征土压力随挡墙位移的变化规律。数学拟合方法常以静止土压力、主/被动土压力为基础,通过构造数学函数来描述挡墙位移土压力,但所采用的数学函数形式各不相同。将挡墙位移土压力的数学拟合公式按函数形式分为:三角函数、指数函数、双曲线函数、幂函数、S型函数以及其他函数等6大类,总结了位移土压力数学拟合公式的特点与不足,并指出需进一步研究的方向。结果表明:数学拟合公式的主要差异在于函数形式选择和待定参数及取值不同,导致了数学拟合公式的多样性与研究的广泛性。合理实用的位移土压力数学拟合公式需具备3方面特征:边界条件与初值满足、参数含义明确以及能反映挡墙与土体之间的相互作用。在试验方面,应持续对挡墙不同位移模式开展针对性研究,并进行黏性土、非饱和土、湿陷性黄土、膨胀土等的土压力试验;在理论计算方面,应加强位移土压力数学拟合公式间对比分析,探究各自的合理性及适用性,揭示土压力与挡墙位移关系的内在机理。拓展对非饱和土挡墙的位移土压力研究,完善参数选择、模型验证,以加快工程应用进程。  相似文献   

19.
The spiral assembly steel structure, a newly developed retaining wall for the rapid excavation of small-sized foundation pits in unsaturated soil, is presented. This new type of retaining structure is prefabricated in the factory and is assembled on site in the excavation of a pit. This retaining structure is composed of several prefabricated steel structural units, in which the adjacent steel structural units are joined with connectors. Each steel structural unit has one steel pipe in the radial direction and is welded to a single piece of steel plate. After full installation in situ, the retaining structure becomes a cylindrical steel structure. With the protection afforded by this new type of retaining structure, excavation work can be completed within 24 h to a depth up to 5 m. In order to verify the reliability and effectiveness of this new retaining structure, field construction tests were conducted in Beijing, China. The test construction was monitored. The monitoring program included measuring stress in the structure, lateral earth pressure, and lateral deformation of the surrounding soil. The monitoring data from the field test were compared with the theoretical results. The results show that the proposed new structure is reliable and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号