首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
探索了通过加入金属Mn并结合熔体热处理工艺来控制铝硅合金中富铁相的形态.结果表明:熔体经过预先热处理后,加入Mn可以使绝大多数针状铁相转变成块状铁相,且粒径均一;预先热处理可以减少Mn的加入量而取得较好的效果,适宜的加入量为x(Mn)/x(Fe)=0.5~1.1(摩尔比),并可以通过控制Mn的加入量来控制块状富铁相杂质的粒径大小;经过联合处理的含铁铝硅合金的抗拉强度提高40~80 MPa,伸长率提高6%~7%.  相似文献   

2.
利用Al-La稀土中间合金对液态A356铝合金进行了细化处理,并用低温浇注技术制备了半固态A356铝合金浆料,研究了细化处理对所制备半固态A356铝合金的初生α-Al相形貌和尺寸的影响。结果表明,细化处理的A356铝合金经低温浇注可制备具有颗粒状和蔷薇状初生α-Al相的半固态浆料,稀土La可显著改善半固态A356铝合金中初生α-Al相的晶粒尺寸和颗粒形貌。探讨了稀土La对半固态A356铝合金的初生α-Al相细化机理。  相似文献   

3.
研究添加Al-5Ti-B、Mn和Sn对A356铝合金滑动磨损性能的影响。采用光学显微镜、扫描电镜和透射电镜观察合金的显微组织和磨损表面。结果表明,Al-5Ti-B晶粒细化的合金具有α(Al)等轴晶组织,比未细化合金具有更好的抗磨损性能。另外,Mn元素的添加能使β-Al5Fe Si转变成α-Al(Mn,Fe)Si相,减少裂纹形成的倾向并提高合金的抗磨损性能。A356合金中添加Sn会形成Mg2Sn相,导致合金不能形成Mg2Si析出强化相;同时软化的β-Sn相会降低合金的硬度并最终降低合金的抗磨损性能。  相似文献   

4.
采用熔体混合技术处理A356铝合金,并通过再次重熔加热研究熔体混合处理细化效果的稳定性。利用光学显微镜观察合金组织,用Image Pro金相分析软件测定了初生α-Al相的平均直径。结果表明,熔体混合技术能较好地细化A356铝合金中的初生α-Al相,且A356铝合金的熔体混合处理在650℃下具有较好的一次重熔稳定性。  相似文献   

5.
在传统的A356铝合金中加入Al-10Sr中间合金压铸成型制备新型的铝合金轮毂材料,通过光学显微镜和扫描电镜研究了铸态及T6热处理态A356铝合金的组织及其性能,分析了合金的断裂机制。结果表明:铸态A356合金中铁基化合物主要为β相(Al5FeSi);经T6工艺处理后,共晶Si粒子的边角更加圆润,Mg2Si完全固溶于铝基体中,合金组织得到改善;铸态及热处理态A356铝合金试样的拉伸断口均有大量韧窝存在,合金呈现较好的塑性;但T6热处理态A356铝合金的断口处韧窝与铸态相比更加均匀,合金的塑性提高;合金的断裂机制为韧窝+解理断裂的复合断裂机制。  相似文献   

6.
采用行波电磁搅拌和低过热度浇注复合制备工艺,成功制备出初生α-Al为球状的较大尺寸A356铝合金半固态浆料.研究了浇注温度、搅拌频率和搅拌功率对A356铝合金半固态浆料组织的影响.结果表明,随着浇注温度的降低,半固态A356铝合金组织中的初生α-Al更圆整.当搅拌频率达到或高于10Hz时,半固态A356铝合金浆料中的组织比较理想.当电磁搅拌功率增大时,半固态A356铝合金熔体中的蔷薇状初生α-Al受到更剧烈的附加温度起伏而使枝晶根部熔断,形成更多更圆整的球状初生相.因此,在630℃浇注、搅拌频率为10Hz和搅拌功率为1.72kW下,能制备出更圆整、细小的初生α-Al.  相似文献   

7.
La、Y微合金化对铝硅合金组织及其耐腐蚀性的影响   总被引:1,自引:0,他引:1  
研究了La、Y微合金化对A356铝合金组织及其耐腐蚀性的影响。结果表明,在微合金化的作用下,A356铝合金随La、Y元素加入量的增加,其初生相细化较显著并呈先增大后减小的趋势,添加0.15wt%La,0.3wt%Y时,晶粒细化效果最佳。此微合金化对A356合金中α-Al晶粒的细化效果明显优于La。在微合金化的作用下,A356铝合金的耐腐蚀性得到了显著的改善,这主要是通过微合金化手段细化其晶粒来实现的。  相似文献   

8.
研究了La、Y微合金化对A356铝合金组织及其耐腐蚀性的影响。结果表明,在微合金化的作用下,A356铝合金随La、Y元素加入量的增加,其初生相细化较显著并呈先增大后减小的趋势,添加0.15wt%La,0.3wt%Y时,晶粒细化效果最佳。此微合金化对A356合金中α-Al晶粒的细化效果明显优于La。在微合金化的作用下,A356铝合金的耐腐蚀性得到了显著的改善,这主要是通过微合金化手段细化其晶粒来实现的。  相似文献   

9.
采用图像分析仪对细化前后铸态A356铝合金组织中的初生α-Al枝晶数量进行定量分析,建立了A356铝合金的力学性能与初生α-Al相数量之间的关系。结果表明,当Al-5Ti-1B添加量大于0.5%时,组织内形成细小的等轴晶。α-Al枝晶的数量随着细化剂添加量的增加而增加。线性拟合结果揭示了抗拉强度、伸长率、质量参数和初生α-Al数量之间的关系。  相似文献   

10.
为改善力学性能,采用新型Al-5Ti-1B-1RE中间合金细化剂和Al-10Sr中间合金变质剂对铸态多元铝硅A356铝合金及在铸态A356铝合金中按一定比例添加Cu、Mn、Ti等元素组成的新型铝合金进行复合细化变质处理。采用光学显微镜(OM)、扫描电镜(SEM)及能谱、透射电镜(TEM)和电子式万能试验机(CSS-44100)等技术对多元铝硅合金中的第二相粒子的形态分布特征及强化机制进行分析。结果表明:经复合细化变质处理的A356铝合金中的第二相粒子共晶硅相由粗大的片层状转变为典型的纤维状,在软韧相α-Al基体晶界处较均匀的析出,α-Al相晶粒尺寸显著变小,其强化机制主要是第二相粒子共晶硅Hall-Petch晶界细晶强化;在新型铝合金中除第二相粒子共晶硅外,还存在其它较弥散分布在晶界或晶内的第二相强化粒子,多种强化机制共同起作用,当分布在晶界上时,主要是Hall-Petch强化机制;当分布在晶内时,主要是Orowan强化机制,成为阻碍位错运动的有效障碍,起到强化作用。  相似文献   

11.
在含1.0%Fe(质量分数)的A356铝合金中添加不同含量的Mn,采用OM、SEM、EDS及DSC等分析方法研究Mn/Fe摩尔比对富铁相形态的影响及其规律,探讨添加Mn后A356-1.0Fe合金中物相的凝固顺序。结果表明:随着Mn/Fe摩尔比的提高,富铁相形态的演变顺序为:针状→汉字状→树枝状→星形→多边形状,当Mn/Fe摩尔比超过1.2时可基本消除针状铁相。富铁相中(Fe,Mn)/Si摩尔比随富铁相形态的凝固先后顺序逐渐增加,分别为针状富铁相中(Fe,Mn)/Si摩尔比为0.5~0.7,树枝状和汉字状富铁相中(Fe,Mn)/Si摩尔比为的1.2~1.7,星型和多边形富铁相中(Fe,Mn)/Si摩尔比为1.9。富铁相的平均晶粒尺寸和体积分数随Mn/Fe摩尔比的增加先增加后减小,而后再增加。其中当Mn/Fe摩尔比为1.0时,富铁相的平均晶粒尺寸和体积分数均为最小,与A356-1.0Fe合金的相近。此外,Mn的添加有利于提高共晶相和α(Al)基体相的形成温度,有利于多边形富铁相的形成。  相似文献   

12.
研究了采用新型Al-5Ti-1B-1RE中间合金和Al-10Sr中间合金对A356铝合金进行单一或复合细化变质处理后的组织、力学性能和共晶硅生长机制的影响。结果表明:单一细化变质处理中Al-5Ti-1B-1RE中间合金对A356铝合金中α-Al相有明显的细化作用,合金的强度和维氏硬度显著提高;Al-10Sr 中间合金对共晶硅有强的变质作用,合金的伸长率明显提高;而经复合细化变质处理后α-Al相形状和尺寸变得更均匀细小,晶界更清晰,共晶硅相几乎都转变成更弥散、更细小的纤维状,片层状共晶硅也几乎完全消失,共晶硅长度由铸态40-60 μm降低到1-2 μm之间,达到完全变质效果,其力学性能显著高于铸态、单一细化变质剂处理的A356铝合金。未细化变质的A356铝合金中的共晶Si的生长方式为典型的小平面台阶生长,复合细化变质处理的共晶硅以孪晶凹槽机制生长为主,小平面生长特征逐渐减弱直至消失。  相似文献   

13.
采用金相显微镜(OM)、扫描电子显微镜(SEM)、差示扫描量热分析(DSC)、X射线衍射(XRD)、拉伸试验机、显微硬度计等分析手段,研究了稀土Er含量对铸态A356铝合金显微组织、拉伸性能和硬度的影响,探讨了Er元素的作用机制。结果表明:不同Er含量A356铝合金的组织都由初生α-Al相和共晶硅组成,添加0. 2%~0. 7%(质量分数,下同)的Er后,A356铝合金的晶粒明显细化,且α-Al晶粒尺寸和二次枝晶间距减小;未添加Er的A356铝合金中共晶硅呈粗大条状或块状,Er改性后的A356铝合金中共晶硅主要呈短棒或颗粒状。随着Er含量的增加,A356铝合金中共晶硅的宽径比先减小后增大,当Er的质量分数为0. 4%时达到最小值; A356铝合金的抗拉强度、硬度和断后伸长率都表现为先升高而后降低的趋势,当Er的质量分数为0. 4%时达到最大值。在A356铝合金中添加一定量的Er,可以起细化晶粒、改善共晶硅相形态、固溶强化和弥散强化的作用,适合的Er元素添加量为0. 4%。  相似文献   

14.
采用JMatPro软件、直读光谱仪、金相显微镜、X射线衍射仪、电子万能拉伸试验机和扫描电镜研究了Y对再生A356铝合金凝固组织及力学性能的影响。结果表明,再生A356合金的凝固组织以初生α-Al和颗粒状共晶硅为主。随着Y加入量由0增加至0.5%,合金的α-Al晶粒尺寸逐渐减小,抗拉强度和伸长率逐渐增大;合金中生成的Al3Y相为α-Al的优良异质形核质点,同时其还对共晶Si起到显著的变质细化作用。  相似文献   

15.
通过向A356铝合金中添加不同比例的Al-10Fe、Al-10Mn中间合金,制备了不同铁含量和锰铁质量比的再生铝合金,研究了铁和锰元素对合金组织和力学性能的影响.结果表明:随着铁的质量分数从0.2%增加至2.0%,富铁相尺寸增大,形貌从骨骼状转变为针状,合金的抗拉强度下降;当铁的质量分数为1.0%、锰铁质量比小于1时,...  相似文献   

16.
采用金相(OM)、扫描电镜(SEM)、能谱(EDS)和透射电镜(TEM),研究6061铝合金中富铁相在均匀化过程中的转变和析出行为.结果表明:Mn元素直接参与6061铝合金中富铁相的相变过程,使富铁相由板条状的β-AlFeSi相转变成颗粒状的α-Al(FeMn)Si相,在560℃未发现明显的β-Al5FeSi→α-Al8Fe2Si的相变过程;在均匀化过程中,析出块状Al8Fe2Si相和颗粒状Al167.8Fe44.9Si23.9相,其中,Al167.8Fe44.9Si23.9相的析出速度受β-Al5FeSi→α-Al8Fe2Si的相变过程影响.  相似文献   

17.
对采用消失模壳型铸造制备的A356铝合金在铸态和T6热处理态下的微观组织、拉伸性能以及拉伸断口进行了研究,并与消失模铸造A356铝合金进行了对比分析。结果表明:消失模壳型铸造A356铝合金组织主要有α(Al)初生相、共晶硅相以及Mg2Si相组成。经过T6热处理后,共晶硅形貌更加球化,均匀地分布于晶界处;且共晶硅粒子的平均长度、宽度和长宽比都比铸态条件下的小。与消失模铸造相比,组织中的初生相和共晶硅相都明显细化。经T6处理后,消失模壳型铸造A356合金的力学性能得到明显提高,其中抗拉强度、延伸率和布氏硬度分别达到260.53MPa、6.15%和86.0,其与消失模铸造相比具有明显优势。此外,消失模壳型铸造A356铝合金拉伸断口为具有准解理面和韧窝形貌的混合断口,最终表现为穿晶断裂模式。而消失模铸造A356铝合金拉伸断口为明显的脆性断口。  相似文献   

18.
采用近液相线浇注法,通过在A356铝合金中加入Al-Sc中间合金得到了含Sc的A356铝合金半固态浆料。研究了Sc含量、保温时间以及浇注温度对A356铝合金半固态组织的影响;探索了Sc含量对共晶Si相形貌的影响。研究结果表明,A356铝合金加入0.2%的Sc在625℃保温10 min可制备具有近球状、细小、均匀颗粒的半固态浆料;随着Sc含量的增加,共晶Si的形貌由板条状逐步转变为纤维状,分析认为这与Sc在Si晶粒中诱发的孪晶有关。Sc和Al的共晶化合物Al3Sc在基体组织中弥散分布,促进了A356半固态组织的细化。  相似文献   

19.
采用差示扫描量热仪、金相显微镜、扫描电子显微镜及能谱分析等方法,通过对6082铝合金的铸态和均匀化态的显微组织观察和共晶相的量化统计研究,确定了6082铝合金的最佳均匀化制度。结果表明:6082铝合金铸态组织中存在着大量的非平衡凝固的Mg2Si共晶相和β-Al(Mn,Fe) Si相共晶相。经过560℃10 h均匀化后,Mg2Si共晶相溶解入α(Al)基体中,β-Al(Mn,Fe)Si共晶相向α-Al(Mn,Fe)Si相转变。  相似文献   

20.
《铸造》2017,(11)
A356铝合金中添加微量Zr,研究微量Zr对A356铝合金的组织和性能的影响。研究结果表明,添加0.05%~0.25%Zr能显著细化α-Al枝晶组织,且当0.15%~0.25%Zr时其细化效果能达到最佳,并有利于改善共晶硅分布。SEM分析结果表明,添加Zr在组织中形成块状的含Zr的化合物相,且Zr元素主要分布于晶界处。添加Zr有利于提高铝合金的屈服强度、抗拉强度、伸长率和硬度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号