首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
For the first time, GaAs-based 1.5 /spl mu/m singlemode emission has been realised utilising GaInNAs active-layer material and lateral distributed feedback. The double quantum well separate confinement laser structure was grown by plasma-assisted molecular beam epitaxy. A threshold current of 240 mA and an external efficiency of 0.11 W/A could be demonstrated with a sidemode suppression ratio of better than 26 dB in pulsed operation. Singlemode emission up to 1506.5 nm has been realised.  相似文献   

3.
GaAs-based singlemode emission at 1.5 /spl mu/m has been realised for the first time in continuous-wave operation. GaInNAsSb active-layer material and GaAsN strain-compensating barriers have been used in combination with lateral distributed feedback. Laser diodes with a threshold current of 95 mA, an external efficiency of 0.15 W/A and a maximum output power of more than 10 mW could be demonstrated. A sidemode suppression ratio better than 31 dB could be realised at a singlemode emission wavelength of 1496 nm.  相似文献   

4.
Self-starting continuous-wave passive modelocking of an Er:Yb:glass laser at 1535 nm is demonstrated with the first antimonide semiconductor saturable absorber mirror (SESAM). The Er:Yb:glass laser produces 20 ps pulses at 61 MHz. This laser was used to characterise the nonlinear optical parameters of the metal organic vapour phase epitaxy grown SESAM.  相似文献   

5.
We demonstrate, for the first time, double-bonded AlGaInAs strain-compensated quantum-well 1.3-/spl mu/m vertical-cavity surface-emitting lasers (VCSELs). GaAs-AlAs Bragg mirrors were wafer-bonded on both sides of a cavity containing the AlGaInAs strain-compensated multiple-quantum-well active layers sandwiched by two InP layers. The lasers have operated under pulsed conditions at room temperature. A record low pulsed threshold current density of 4.2 kA/cm/sup 2/ and a highest maximum light output power greater than 4.6 mW have been achieved. The maximum threshold current characteristic temperature T/sub 0/ of 132 K is the best for any long wavelength VCSELs. The laser operated in a single-longitudinal mode, with a side-mode suppression ratio of more than 40 dB, which is the best results for 1.3-/spl mu/m VCSELs.  相似文献   

6.
The modulation/switching properties of a vertical-cavity semiconductor optical amplifier operating at 1.3 μm wavelength are investigated. The device was optically pumped and operated in reflection mode. A 150-mV (100 mA) modulation of the drive to the pump source produced a 7-dB modulation of the pump power, which produced a 35-dB modulation in the output signal. The maximum extinction ratio was 35 dB, and limited by device heating. Frequency response measurements revealed a modulation bandwidth of 1.8 GHz when the amplifier was saturated. This enabled 2.5-Gb/s modulation of a -10 dBm input signal with 5.5-dB fiber-to-fiber gain  相似文献   

7.
Substantially reduced threshold current density and improved efficiency in long-wavelength (>1.4 /spl mu/m) GaAs-based lasers are reported. A 20/spl times/1220 /spl mu/m as-cleaved device showed a room temperature continuous-wave threshold current density of 580 A/cm/sup 2/, external efficiency of 53%, and 200 mW peak output power at 1.5 /spl mu/m. The pulsed threshold current density was 450 A/cm/sup 2/ with 1145 mW peak output power.  相似文献   

8.
We report the demonstration of high-power semiconductor slab-coupled optical waveguide lasers (SCOWLs) operating at a wavelength of 1.5 /spl mu/m. The lasers operate with large (4/spl times/8 /spl mu/m diameter) fundamental mode and produce output power in excess of 800 mW. These structures have very low loss (/spl sim/0.5 cm/sup -1/) enabling centimeter-long devices for efficient heat removal. The large fundamental mode allows 55% butt-coupling efficiency to standard optical fiber (SMF-28). Comparisons are made between SCOWL structures having nominal 4- and 5-/spl mu/m-thick waveguides.  相似文献   

9.
The multifunctional characterization of a two-section amplifier-modulator-detector semiconductor optical amplifier (AMD-SOA) is presented. Detectivity is analyzed in terms of bandwidth and responsivity while modulation properties are characterized by temporal response and extinction ratio. Receiver sensitivities of -26 dBm at 155 Mb/s and -19.5 dBm at 622 Mb/s and error-free signal modulation/transmission with simultaneous 10 dB amplification at 622 Mb/s with a 2/sup 23/-1 PRBS signal are reported. This device could find application as transparent add-drop node in photonic packet-switched optical ring networks.  相似文献   

10.
A GaAs-based laser module, which combines the output of four singlemode lasers operating at 1.3 /spl mu/m by using photonic crystal mirrors and combiners, has been developed. The complete device size is around 0.2 mm/sup 2/. The lasers can be operated individually or in parallel with sidemode suppression ratios better than 20 dB.  相似文献   

11.
Single-polarization single-mode (SPSM) operation of a highly birefringent (HB) photonic crystal fiber (PCF) is investigated in detail by using a full-vector finite-element method (FEM) with anisotropic perfectly matched layers (PMLs). The cutoff wavelengths of the two linearly polarized principal states can be designed by varying the structure parameters of the PCF. The confinement loss and splice loss to standard single-mode fiber for particular SPSM PCFs are calculated and optimized at both 1.30 and 1.55 /spl mu/m.  相似文献   

12.
We report the first demonstration of a high-power semiconductor optical amplifier (SOA) based on the slab-coupled optical waveguide concept. This concept allows the realization of SOAs having large fundamental optical modes, low loss, and small optical confinement factor. These attributes support large output saturation power, long length for efficient heat removal, and direct butt-coupling to single-mode fibers. The 1.5-/spl mu/m InGaAsP-InP quantum-well amplifier described here has a length of 1 cm, 1/e/sup 2/ intensity widths of 4 /spl mu/m (vertical) and 8 /spl mu/m (horizontal), a fiber-to-fiber gain of 13 dB, and a fiber-coupled output saturation power of 630 mW (+28 dBm). The measured butt-coupling efficiency between the amplifier and SMF-28 is 55%. Thus, the output saturation power of the amplifier itself is approximately 1.1 W (+31 dBm).  相似文献   

13.
High-power high-brightness 1.93-/spl mu/m wavelength (AlGaIn)(AsSb) tapered diode lasers with a narrow vertical waveguide design are reported for the first time. A nearly diffraction-limited continuous-wave output power of 1.5 W together with a remarkable low fast axis divergence of 43/spl deg/ full-width at half-maximum have been demonstrated. The maximum brightness amounts to 32 MW/cm/sup 2/sr.  相似文献   

14.
A new concept for an infrared waveguide detector based on silicon is introduced. It is fabricated using silicon-on-insulator material, and consists of an erbium-doped p-n junction located in the core of a silicon ridge waveguide. The detection scheme relies on the optical absorption of 1.5-/spl mu/m light by Er/sup 3+/ ions in the waveguide core, followed by electron-hole pair generation by the excited Er and subsequent carrier separation by the electric field of the p-n junction. By performing optical mode calculations and including realistic doping profiles, we show that an external quantum efficiency of 10/sup -3/ can be achieved in a 4-cm-long waveguide detector fabricated using standard silicon processing. It is found that the quantum efficiency of the detector is mainly limited by free carrier absorption in the waveguide core, and may be further enhanced by optimizing the electrical doping profiles. Preliminary photocurrent measurements on an erbium-doped Si waveguide detector at room temperature show a clear erbium related photocurrent at 1.5 /spl mu/m.  相似文献   

15.
In this letter continuous operation is realized from two-dimensional slab photonic crystal lasers at room temperature. The laser structure is prepared by wafer fusion of an InGaAsP MQW active layer with an AlAs layer that is wet oxidized into an Al/sub 2/O/sub 3/ layer subsequently. The incident threshold pump power at 0.98 /spl mu/m is 9.2 mW for a /spl sim/10-/spl mu/m-diameter hexagonal cavity lasing at 1.6 /spl mu/m.  相似文献   

16.
A planar waveguide based on an amorphous silicon-amorphous silicon carbide heterostructure is proposed for the realization of passive and active optical components at the wavelengths /spl lambda/=1.3-1.5 /spl mu/m. The waveguide has been realized by low temperature plasma enhanced chemical vapor deposition and is compatible with the standard microelectronic technologies. Thermo-optical induced modulation at /spl lambda/=1.5 /spl mu/m is demonstrated in this waveguide. Numerical simulations predict that operation frequencies of about 3 MHz are possible. The measurements have also allowed the determination of the previously unknown thermo-optical coefficient of undoped amorphous silicon at this wavelength.  相似文献   

17.
A 1.50 /spl mu/m broad area edge emitting laser is demonstrated with a structure grown by molecular beam epitaxy on a GaAs substrate. The active region is based on a single GaInNAsSb quantum well. The threshold current density is 3.5 kA/cm/sup 2/. Output power over 22 mW per facet is achieved.  相似文献   

18.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

19.
A large core area (1257 /spl mu/m/sup 2/) Tm/sup 3+/-doped ZBLAN fibre laser operated at 1.47 /spl mu/m is demonstrated. The pump source is a Nd:YAG laser operated at 1.064 /spl mu/m. A laser output power of 1.56 W continuous wave was obtained for 5.2 W of launched pump power. The slope efficiency with respect to the launched pump power was measured to be 33%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号