首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On optimal call admission control in cellular networks   总被引:10,自引:0,他引:10  
Two important Quality-of-Service (QoS) measures for current cellular networks are the fractions of new and handoff “calls” that are blocked due to unavailability of “channels” (radio and/or computing resources). Based on these QoS measures, we derive optimal admission control policies for three problems: minimizing a linear objective function of the new and handoff call blocking probabilities (MINOBJ), minimizing the new call blocking probability with a hard constraint on the handoff call blocking probability (MINBLOCK) and minimizing the number of channels with hard constraints on both of the blocking probabilities (MINC). We show that the well-known Guard Channel policy is optimal for the MINOBJ problem, while a new Fractional Guard Channel policy is optimal for the MINBLOCK and MINC problems. The Guard Channel policy reserves a set of channels for handoff calls while the Fractional Guard Channel policy effectively reserves a non-integral number of guard channels for handoff calls by rejecting new calls with some probability that depends on the current channel occupancy. It is also shown that the Fractional policy results in significant savings (20-50\%) in the new call blocking probability for the MINBLOCK problem and provides some, though small, gains over the Guard Channel policy for the MINC problem. Further, we also develop computationally inexpensive algorithms for the determination of the parameters for the optimal policies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Distributed call admission control in mobile/wireless networks   总被引:18,自引:0,他引:18  
The major focus of this paper is distributed call admission control in mobile/wireless networks, the purpose of which is to limit the call handoff dropping probability in loss systems or the cell overload probability in lossless systems. Handoff dropping or cell overload are consequences of congestion in wireless networks. Our call admission control algorithm takes into consideration the number of calls in adjacent cells, in addition to the number of calls in the cell where a new call request is made, in order to make a call admission decision. This is done by every base station in a distributed manner without the involvement of the network call processor. The admission condition is simple enough that the admission decision can be made in real time. Furthermore, we show that our distributed call admission control scheme limits the handoff dropping or the cell overload probability to a predefined level almost independent of load conditions. This is an important requirement of future wireless/mobile networks with quality-of-service (QoS) provisioning  相似文献   

3.
无线移动网中呼叫接纳控制模型分析   总被引:6,自引:1,他引:6  
张雪 《通信学报》2005,26(8):99-109
新一代无线网应该能够同时支持传统的数据业务和实时交互式多媒体业务,并能够为用户提供QoS保证。在无线网中提供QoS保证,呼叫接纳控制扮演着重要的角色。对已有的呼叫接纳控制方面的研究成果进行了归纳、总结和分析,以期得出适合于无线移动多媒体网络的呼叫接纳控制模型。为适应当前的多媒体应用,侧重于对和适应性带宽分配相结合的接纳控制模型的分析。另外,介绍了与价格机制相结合的接纳控制模型,经济学概念的引入,为我们解决问题提供了一种新的视角。  相似文献   

4.
无线网络中由于用户的移动性、频谱资源的缺乏以及信道的衰落,使无线网络的服务质量的供给成为一个日益严峻的问题。呼叫允许控制(CAC)是无线资源管理中的重要组成部分,是一种保证服务质量和网络资源利用率的重要机制。总结了CAC领域的研究成果,对蜂窝无线通信网络的CAC方案进行了分析,指出了目前CAC研究中存在的问题,并探讨了今后的研究方向。  相似文献   

5.
On call admission control in DS/CDMA cellular networks   总被引:3,自引:0,他引:3  
Analytical models are proposed for various direct sequence code-division multiple-access (DS/CDMA) call admission control schemes. Many mathematical call admission models for DS/CDMA cellular networks have been proposed. However, they have shortcomings. First, by ignoring the stochastic traffic load variation or call blocking effect, they failed to sufficiently characterize the second moment of other-cell interference. This leads to inaccurate analysis of a real network. Second, the optimal control parameters were often obtained through an exhaustive search which was very time consuming. Finally, the estimation of system capacity in previous models was obtained by using a simple one-slope path-loss propagation model. However, it is well known that a two-slope path loss propagation model is needed in a line-of-sight (LOS) microcell propagation environment. We propose an analytical model for call admission to overcome these drawbacks. In addition, we combine a modified linear programming technique with the built analytical model to find better call admission control schemes for a DS/CDMA cellular network  相似文献   

6.
7.
An efficient call admission control scheme for handling heterogeneous services in wireless ATM networks is proposed. Quality-of-service provisioning of jitter bounds for constant bit rate traffic and delay bounds for variable bit rate traffic is used in the CAC scheme to guarantee predefined QoS levels for all traffic classes. To reduce the forced handoff call dropping rate, the CAC scheme gives handoff calls a higher priority than new calls by reserving an appropriate amount of resources for potential handoff calls. Resource reservation in the CAC scheme makes use of user mobility information to ensure efficient resource utilization. Simulation results show that the proposed CAC scheme can achieve both low handoff call dropping rate and high resource utilization  相似文献   

8.
In this paper, the authors develop an analytical model to study the performance of a mobile low earth orbiting (LEO) satellite cellular network. The model assumes that the call duration has a gamma distribution and considers the effect of system parameters such as the number of channels per cell, the number of channels reserved for the handoff, and the cell residence time, on the teletraffic performance of the system. The quality of service (QoS) measures studied in this paper include new call blocking probability, handoff failure probability, premature call-termination probability (CTP), and call dropping probability (CDP). Based on the causal central limit theorem, the authors use a two-parameter gamma distribution to approximate the distribution of the sum of the residence times in the cells. The analytical model presented in this paper may be used with any call-holding-time distribution. The analytical results are validated by a computer simulation.  相似文献   

9.
A simple connection control system for multiservice cellular wireless networks is presented. Mobile stations are classified depending on the traffic they generate (e.g., voice, data). Within each class, two subclasses are also identified: stations which have originated inside the cell and stations which come from adjacent cells. The connection control mechanism is carried out by considering a number of priorities among the various classes and their subclasses. It works on two levels: static and dynamic. The static level looks at packet-level quality of service (QoS), such as cell loss and delay, while the dynamic level takes care of connection dynamics and allows the load of the system to be driven with respect to the various subclasses. Results that illustrate the performance of this control mechanism are presented.  相似文献   

10.
In this paper, novel call admission control (CAC) algorithms are developed based on cellular neural networks. These algorithms can achieve high network utilization by performing CAC in real-time, which is imperative in supporting quality of service (QoS) communication over packet-switched networks. The proposed solutions are of basic significance in access technology where a subscriber population (connected to the Internet via an access module) needs to receive services. In this case, QoS can only be preserved by admitting those user configurations which will not overload the access module. The paper treats CAC as a set separation problem where the separation surface is approximated based on a training set. This casts CAC as an image processing task in which a complex admission pattern is to be recognized from a couple of initial points belonging to the training set. Since CNNs can implement any propagation models to explore complex patterns, CAC can then be carried out by a CNN. The major challenge is to find the proper template matrix which yields high network utilization. On the other hand, the proposed method is also capable of handling three-dimensional separation surfaces, as in a typical access scenario there are three traffic classes (e.g., two type of Internet access and one voice over asymmetric digital subscriber line.  相似文献   

11.
Call admission control (CAC) is a key element in the provision of guaranteed quality of service (QoS) in wireless networks. The design of CAC algorithms for mobile cellular networks is especially challenging given the limited and highly variable resources, and the mobility of users encountered in such networks. This article provides a survey of admission control schemes for cellular networks and the research in this area. Our goal is to provide a broad classification and thorough discussion of existing CAC schemes. We classify these schemes based on factors such as deterministic/stochastic guarantees, distributed/local control and adaptivity to traffic conditions. In addition to this, we present some modeling and analysis basics to help in better understanding the performance and efficiency of admission control schemes in cellular networks. We describe several admission control schemes and compare them in terms of performance and complexity. Handoff prioritization is the common characteristic of these schemes. We survey different approaches proposed for achieving handoff prioritization with a focus on reservation schemes. Moreover, optimal and near‐optimal reservation schemes are presented and discussed. Also, we overview other important schemes such as those designed for multi‐service networks and hierarchical systems as well as complete knowledge schemes and those using pricing for CAC. Finally, the paper concludes on the state of current research and points out some of the key issues that need to be addressed in the context of CAC for future cellular networks. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
It is envisaged that next generation wireless networks (NGWN) will be heterogeneous, consisting of multiple radio access technologies (RATs) coexisting in the same geographical area. In these heterogeneous wireless networks, mobile terminals of different capabilities (heterogeneous terminals) will be used by subscribers to access network services. We investigate the effect of using heterogeneous mobile terminals (e.g. single-mode, dual-mode, triple-mode, etc.) on call blocking and call dropping probabilities in cooperative heterogeneous wireless networks. We develop analytical models for heterogeneous mobile terminals and joint radio resource management in heterogeneous wireless networks. Using a two-class three-RAT heterogeneous wireless network as an example, the effect of using heterogeneous terminals in the network is evaluated. Results show the overall call blocking/dropping probability experienced by subscribers in heterogeneous wireless networks depends on the capabilities of mobile terminals used by the subscribers. In the worst case scenario, when all subscribers use single-mode mobile terminals, each subscriber is confined to a single RAT and consequently, joint radio resource management in heterogeneous wireless network has no improvement on new call blocking and handoff call dropping probabilities. However, in the best case scenario, when all subscribers use three-mode terminals, new class-1 call blocking probability decreases from 0.37 (for 100% single-mode terminals) to 0.05, at the arrival rate of 6 calls per minute. New class-2 call blocking probability also decreases from 0.8 to 0.52. Similarly, handoff class-1 call dropping probability decreases from 0.14 to 0.003, and handoff class-2 call dropping probability decreases from 0.44 to 0.09.  相似文献   

13.
多业务无线蜂窝移动通信系统的一种呼叫允许控制策略   总被引:6,自引:0,他引:6  
朱立东  吴诗其 《通信学报》2001,22(11):11-21
第三代移动通信系统要求支持宽带多媒体业务,如话音、视频、数据等多种业务,不同业务有不同的QoS要求。本文提出的多业务无线蜂窝移动通信系统中一种基于QoS的呼收允许控制策略,对不同业务的切换呼叫给予不同的优先权。本文分析了两种呼叫允许控制(CAC)算法,一种是各种业务的切控呼叫无缓冲器,不进入排队系统;另一种是各种业务的切换呼叫设置有缓冲器,进入排除系统,并且话音、视频业务的切切呼叫比数据业务的切换呼叫有更高的优先权,系统的空闲信道应首先分配给话音、视频业务的切换呼叫,再分配给数据业务的切换呼叫。在分析两种CAC算法的呼叫阻塞概率、切换失败概率以及系统吞吐量的基础上,给出了计算机仿真结果。  相似文献   

14.
The phenomenal growth in the subscriber population has necessitated the accurate dimensioning and performance analysis of cellular networks. Classically, cellular networks have been analyzed using Poisson call arrivals and negative exponential channel holding times. However, these assumptions may not be valid for modern networks providing heterogeneous services and serving users with highly varied mobility. In this paper, we propose a moment-based approach for analyzing cellular networks under more generalized arrival processes and more generalized channel holding-time distributions. We present a model for accurately characterizing the handoff traffic offered by a cell to its neighbor in a simple two-cell scenario. We derive this handoff traffic for two different channel holding-time distributions. Our two-cell model easily lends itself to being used as a building block for analyzing more general cellular network layouts. We illustrate the accuracy of our analysis using comparison with simulation results  相似文献   

15.
Planning effective cellular mobile radio networks   总被引:6,自引:0,他引:6  
This paper deals with the automatic selection and configuration of base station sites for mobile cellular networks. An optimization framework based on simulated annealing is used for site selection and for base-station configuration. Realistic path-loss estimates incorporating terrain data are used. The configuration of each base station involves selecting antenna type, power control, azimuth, and tilt. Results are presented for several design scenarios with between 250 and 750 candidate sites and show that the optimization framework can generate network designs with desired characteristics such as high area coverage and high traffic capacity. The work shows that cellular network design problems are tractable for realistic problem instances  相似文献   

16.
In cellular networks, blocking occurs when a base station has no free channel to allocate to a mobile user. One distinguishes between two kinds of blocking, the first is called new call blocking and refers to blocking of new calls, the second is called handoff blocking and refers to blocking of ongoing calls due to the mobility of the users. In this paper, we first provide explicit analytic expressions for the two kinds of blocking probabilities in two asymptotic regimes, i.e., for very slow mobile users and for very fast mobile users, and show the fundamental differences between these blocking probabilities. Next, an approximation is introduced in order to capture the system behavior for moderate mobility. The approximation is based on the idea of isolating a set of cells and having a simplifying assumption regarding the handoff traffic into this set of cells, while keeping the exact behavior of the traffic between cells in the set. It is shown that a group of 3 cells is enough to capture the difference between the blocking probabilities of handoff call attempts and new call attempts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
In this paper, we propose to concurrently search for a number of mobile users in a wireless cellular network based on the probabilistic information about the locations of mobile users. The concurrent search approach guarantees that all k mobile users will be located within k time slots. It is shown that even in the worst case when mobile users appear equally in all the cells of the network, the concurrent search approach is able to reduce the average paging cost by 25%. More importantly, this is achieved without an increase in the worst case paging delay or in the worst case paging cost. Depending on the total number of mobile users to be located, total number of cells in the network, and the probabilistic information about the locations of mobile users, the reduction of the average paging cost due to the usage of the concurrent search approach ranges from 25% to 88%. The case in which perfect probabilistic information is unavailable is also studied.  相似文献   

18.
Dynamic call admission control in ATM networks   总被引:5,自引:0,他引:5  
The authors present dynamic call admission control using the distribution of the number of cells arriving during the fixed interval. This distribution is estimated from the measured number of cells arriving at the output buffer during the fixed interval and traffic parameters specified by users. Call acceptance is decided on the basis of online evaluation of the upper bound of cell loss probability, derived from the estimated distribution of the number of calls arriving. QOS (quality of service) standards can be guaranteed using this control when there is no estimation error. The control mechanism is effective when the number of call classes is large. It tolerates loose bandwidth enforcement and loose policing control, and dispenses with modeling of the arrival processes. Numerical examples demonstrate the effectiveness of this control, and implementation is also discussed  相似文献   

19.
In today's systems, upon arrival of calls to mobile users, the system attempts to locate the users sequentially (one by one) through a paging operation. In this letter, we propose to concurrently search for a number of mobile users in a mobile network, significantly reducing the cost of locating mobile users. The reduction in the paging costs due to such a concurrent search can be quite substantial, depending on the knowledge of the probabilities of the users' locations, the number of cells in the network, and the number of mobiles to be located. Additionally, we propose a low-complexity heuristic that reduces the average paging cost by 25%, in the case of no knowledge of probabilities of the mobiles' locations. With such knowledge, further reduction in the average paging costs of up to 90% can be achieved.  相似文献   

20.
Handover and channel assignment in mobile cellular networks   总被引:3,自引:0,他引:3  
A taxonomy of channel assignment strategies is provided, and the complexity in each cellular component is discussed. Various handover scenarios and the roles of the base station and the mobile switching center are considered. Prioritization schemes are discussed, and the required intelligence distribution among the network components is defined  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号