首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pt–Ba–Al2O3 active and selective for NOx storage and selective reduction to N2 has been prepared and tested. Characterization of the parent Al2O3, Pt–Al2O3 and Ba–Al2O3 materials, as well as of Pt–Ba–Al2O3 catalyst in the oxidized, reduced and sulphated state has been performed by FT-IR spectroscopy of low-temperature adsorbed carbon monoxide and of adsorbed acetonitrile. XRD, TEM and XPS analyses have also been performed. Evidence for the predominance of Ba species, which are highly dispersed on the alumina support surface, and may be carbonated or sulphated, has been provided. Competitive interaction of Pt and Ba species with the surface sites of alumina has also been found.  相似文献   

2.
In this paper, the effect of CO2 and H2O on NOx storage and reduction over a Pt–Ba/γ-Al2O3 (1 wt.% Pt and 30 wt.% Ba) catalyst is shown. The experimental results reveal that in the presence of CO2 and H2O, NOx is stored on BaCO3 sites only. Moreover, H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. Only 16% of the total barium is utilized in NO storage. The rich phase shows 95% selectivity towards N2 as well as complete regeneration of stored NO. In the presence of CO2, NO is oxidized into NO2 and more NOx is stored as in the presence of H2O, resulting in 30% barium utilization. Bulk barium sites are inactive in NOx trapping in the presence of CO2·NH3 formation is seen in the rich phase and the selectivity towards N2 is 83%. Ba(NO3)2 is always completely regenerated during the subsequent rich phase. In the absence of CO2 and H2O, both surface and bulk barium sites are active in NOx storage. As lean/rich cycling proceeds, the selectivity towards N2 in the rich phase decreases from 82% to 47% and the N balance for successive lean/rich cycles shows incomplete regeneration of the catalyst. This incomplete regeneration along with a 40% decrease in the Pt dispersion and BET surface area, explains the observed decrease in NOx storage.  相似文献   

3.
The NOx storage and reduction functions of a Pt–Ba/Al2O3 “NOx storage–reduction” catalyst has been investigated in the present work by applying the transient response and the temperature programmed reaction methods, by using propylene as the reducing agent. It is found that: (i) the storage of NOx occurs first at BaO and then at BaCO3, which are the most abundant sites following regeneration of catalyst with propylene; (ii) the overall storage process at BaCO3 is slower than at BaO; (iii) CO2 inhibits the NOx storage at low temperatures; (iv) the amount of NOx stored up to catalyst saturation at 350 °C corresponds to 17.6% of Ba; (v) the reduction of stored NOx groups is fast and is limited by the concentration of propylene in the investigated T range (250–400 °C); (vi) selectivity to N2 is almost complete at 400 °C but is significantly lower at 300 °C due to the formation of NO which can be tentatively ascribed to the presence of unselective Pt–O species.  相似文献   

4.
The presence of sulfur in automotive exhaust is known to be detrimental to lean-NOx traps as SO2 is oxidized to SO3 that competes with NO2 for sites on the trap and is difficult to remove. In this study the effect of adding Cu to the prototypical Pt–BaO/γ-Al2O3 formulation on the system's tolerance for sulfur was investigated. It was found that in the absence of sulfur, Cu decreases the performance in terms of both NOx storage capacity and reduction of NOx to N2 during regeneration. In the presence of SO2, Cu provides a significant improvement in sulfur tolerance so that, after sulfur exposure, the storage capacity of the Cu-modified material can exceed that of the baseline material. The sulfur tolerance afforded by Cu is attributed to a moderation in the activity for SO2 oxidation resulting from the formation of a Pt–Cu bimetallic phase. The propensity for NO oxidation is also modified, but to a lesser effect. Evidence for the bimetallic phase is provided by temperature-programmed reduction (TPR) and electron microscopy. The impact of SO2 on the Cu-modified material is greater during the regenerative reduction cycle. In this case, the results suggest that sulfur blocks Pt and possibly Cu sites and that the sulfur is not removed by oxidation during the subsequent storage cycle. Hence, activity lost during the reduction cycle is not restored. In contrast, sulfur that blocks Pt sites on the baseline material during the reduction cycle is subsequently oxidized and desorbs from the Pt, restoring the activity. However, some of the resulting SO3 reacts with the BaO to form BaSO4, and there is a partial loss of storage capacity.  相似文献   

5.
Novel NOx storage-reduction (NOxSR) catalysts prepared by Pt and/or Cu impregnation of Mg–Al (60:40) hydrotalcite (HT)-type compounds show better performances in NOx storage than Pt–Ba/Al2O3 Toyota-type NOxSR catalysts at reaction temperatures lower than 250 °C. The presence of Pt or Cu considerably enhances the activity, with the former more active. The nature of the HT source, however, also influences performance. The co-presence of Pt and Cu slightly worsens the low temperature activity, but considerably promotes the resistance to deactivation after severe hydrothermal treatment and in the presence of SO2. This effect is attributed to both the possibility of formation of a Pt–Cu alloy after reduction, and the modification of the HT induced during the deposition of Cu. The overall Pt–Cu/HT performances are thus superior to those of the Pt–Ba/Al2O3 Toyota-type NOxSR catalysts.  相似文献   

6.
A series of 1 wt.%Pt/xBa/Support (Support = Al2O3, SiO2, Al2O3-5.5 wt.%SiO2 and Ce0.7Zr0.3O2, x = 5–30 wt.% BaO) catalysts was investigated regarding the influence of the support oxide on Ba properties for the rapid NOx trapping (100 s). Catalysts were treated at 700 °C under wet oxidizing atmosphere. The nature of the support oxide and the Ba loading influenced the Pt–Ba proximity, the Ba dispersion and then the surface basicity of the catalysts estimated by CO2-TPD. At high temperature (400 °C) in the absence of CO2 and H2O, the NOx storage capacity increased with the catalyst basicity: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr. Addition of CO2 decreased catalyst performances. The inhibiting effect of CO2 on the NOx uptake increased generally with both the catalyst basicity and the storage temperature. Water negatively affected the NOx storage capacity, this effect being higher on alumina containing catalysts than on ceria–zirconia samples. When both CO2 and H2O were present in the inlet gas, a cumulative effect was observed at low temperatures (200 °C and 300 °C) whereas mainly CO2 was responsible for the loss of NOx storage capacity at 400 °C. Finally, under realistic conditions (H2O and CO2) the Pt/20Ba/Al5.5Si catalyst showed the best performances for the rapid NOx uptake in the 200–400 °C temperature range. It resulted mainly from: (i) enhanced dispersions of platinum and barium on the alumina–silica support, (ii) a high Pt–Ba proximity and (iii) a low basicity of the catalyst which limits the CO2 competition for the storage sites.  相似文献   

7.
Characteristics of MnOy–ZrO2 and Pt–ZrO2–Al2O3 as reversible sorbents of NOx were investigated under dynamic changes in atmosphere. These sorbents can be used reversibly with a change of C3H8 concentration in the reaction gases. Catalytic reduction of NO occurred in the presence of propane, which was more pronounced on Pt–ZrO2–Al2O3 than on MnOy-ZrO2 due to high activity of Pt surface for this reaction on MnOy in MnOy–ZrO2. The sorption was observed as soon as the atmosphere changed from a reducing to an oxidizing one. This implies that a high equilibrium partial pressure of O2 is necessary for NO uptake since the sorbed NO3 species becomes stable. The beginning of NOx desorption atmospheres was somewhat dependent on the amount of stored NOx. The presence of propane in the gas phase strongly affected the characteristic sorption and desorption properties of MnOy–ZrO2 and Pt–ZrO2–Al2O3. The sorption and desorption properties are different for MnOy–ZrO2 and Pt–ZrO2–Al2O3, since the noble metal or metal oxide possesses unique activity for the NO reaction with C3H8 and the amount of oxygen available for oxidative sorption of NO.  相似文献   

8.
A mean field model, for storage and desorption of NOx in a Pt/BaO/Al2O3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al2O3; (ii) NO oxidation on Pt/BaO/Al2O3; (iii) NOx storage on BaO/Al2O3; (iv) NOx storage on Pt/BaO/Al2O3 with thermal regeneration and (v) NOx storage on Pt/BaO/Al2O3 with regeneration using C3H6. In this paper, we focus on the last sub-system. The kinetic model for NOx storage on Pt/BaO/Al2O3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NOx storage model on BaO/Al2O3. This model was not sufficient to describe the NOx storage experiments for the Pt/BaO/Al2O3, because the NOx desorption in TPD experiments was larger for Pt/BaO/Al2O3, compared to BaO/Al2O3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NOx from Pt/BaO/Al2O3. To this NOx storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO2 and C3H6. The main reactions for continuous reduction of NOx occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments.  相似文献   

9.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NOx adsorber catalyst, Pt/K/Al2O3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al2O3 phase with associated hydroxyl groups at the surface, and an alkalized-Al2O3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al2O3 and 65% for the alkalized-Al2O3. NO2 and CO2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al2O3 adsorbs 0.087 μmol CO2/m2and 2.0 μmol NO2/m2, and Pt/K/Al2O3 adsorbs 2.0 μmol CO2/m2and 6.4 μmol NO2/m2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al2O3 during both lean and rich periods of the NOx adsorber catalyst cycle.  相似文献   

10.
Selective catalytic reduction of NOx by C3H6 in the presence of H2 over Ag/Al2O3 was investigated using in situ DRIFTS and GC–MS measurements. The addition of H2 promoted the partial oxidation of C3H6 to enolic species, the formation of –NCO and the reactions of enolic species and –NCO with NOx on Ag/Al2O3 surface at low temperatures. Based on the results, we proposed reaction mechanism to explain the promotional effect of H2 on the SCR of NOx by C3H6 over Ag/Al2O3 catalyst.  相似文献   

11.
The NOx storage behavior of a series of Pt-Ba/Al2O3 catalysts, prepared by wet impregnation of Pt/Al2O3 with Ba(Ac)2, has been investigated. The catalysts with Ba loadings in the range 4.5–28 wt.% were calcined at 500 °C in air and subsequently exposed to NO pulses in 5 vol.% O2/He atmosphere. Catalysts were characterized by means of thermogravimetry (TG) combined with mass spectroscopy (MS) and XRD before and after exposure to NO pulses. Characterization of the calcined catalysts corroborated the existence of three Ba-containing phases which are discernible based on their different thermal stability: BaO, LT-BaCO3 and HT-BaCO3. Characterization after NOx exposure showed that the different Ba-containing phases present in the catalysts possess different reactivity for barium nitrate formation, depending on their interfacial contact. The different Ba(NO3)2 species produced upon NOx exposure could be distinguished based on their thermal stability. The study revealed that during the NOx storage process a new thermally instable BaCO3 phase formed by reaction of evolved CO2 with active BaO. The fraction of Ba-containing species that were active in NOx storage depended on the Ba loading, showing a maximum at a Ba loading of about 17 wt.%. Lower and higher Ba loading resulted in a significant loss of the overall efficiency of the Ba-containing species in the storage process. The loss in efficiency observed at higher loading is attributed to the lower reactivity of the HT-BaCO3, which becomes dominant at higher loading, and the increased mass transfer resistance.  相似文献   

12.
A multi-component NOx-trap catalyst consisting of Pt and K supported on γ-Al2O3 was studied at 250 °C to determine the roles of the individual catalyst components, to identify the adsorbing species during the lean capture cycle, and to assess the effects of H2O and CO2 on NOx storage. The Al2O3 support was shown to have NOx trapping capability with and without Pt present (at 250 °C Pt/Al2O3 adsorbs 2.3 μmols NOx/m2). NOx is primarily trapped on Al2O3 in the form of nitrates with monodentate, chelating and bridged forms apparent in Diffuse Reflectance mid-Infrared Fourier Transform Spectroscopy (DRIFTS) analysis. The addition of K to the catalyst increases the adsorption capacity to 6.2 μmols NOx/m2, and the primary storage form on K is a free nitrate ion. Quantitative DRIFTS analysis shows that 12% of the nitrates on a Pt/K/Al2O3 catalyst are coordinated on the Al2O3 support at saturation.

When 5% CO2 was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by 45% after 1 h on stream due to the competition of adsorbed free nitrates with carboxylates for adsorption sites. When 5% H2O was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by only 16% after 1 h, but the Al2O3-based nitrates decreased by 92%. Interestingly, with both 5% CO2 and 5% H2O in the feed, the total storage only decreased by 11%, as the hydroxyl groups generated on Al2O3 destabilized the K–CO2 bond; specifically, H2O mitigates the NOx storage capacity losses associated with carboxylate competition.  相似文献   


13.
For the first time, the coupling of fast transient kinetic switching and the use of an isotopically labelled reactant (15NO) has allowed detailed analysis of the evolution of all the products and reactants involved in the regeneration of a NOx storage reduction (NSR) material. Using realistic regeneration times (ca. 1 s) for Pt, Rh and Pt/Rh-containing Ba/Al2O3 catalysts we have revealed an unexpected double peak in the evolution of nitrogen. The first peak occurred immediately on switching from lean to rich conditions, while the second peak started at the point at which the gases switched from rich to lean. The first evolution of nitrogen occurs as a result of the fast reaction between H2 and/or CO and NO on reduced Rh and/or Pt sites. The second N2 peak which occurs upon removal of the rich phase can be explained by reaction of stored ammonia with stored NOx, gas phase NOx or O2. The ammonia can be formed either by hydrolysis of isocyanates or by direct reaction of NO and H2.

The study highlights the importance of the relative rates of regeneration and storage in determining the overall performance of the catalysts. The performance of the monometallic 1.1%Rh/Ba/Al2O3 catalyst at 250 and 350 °C was found to be dependent on the rate of NOx storage, since the rate of regeneration was sufficient to remove the NOx stored in the lean phase. In contrast, for the monometallic 1.6%Pt/Ba/Al2O3 catalyst at 250 °C, the rate of regeneration was the determining factor with the result that the amount of NOx stored on the catalyst deteriorated from cycle to cycle until the amount of NOx stored in the lean phase matched the NOx reduced in the rich phase. On the basis of the ratio of exposed metal surface atoms to total Ba content, the monometallic 1.6%Pt/Ba/Al2O3 catalyst outperformed the Rh-containing catalysts at 250 and 350 °C even when CO was used as a reductant.  相似文献   


14.
The release and reduction of NOx in a NOx storage-reduction (NSR) catalyst were studied with a transient reaction analysis in the millisecond range, which was made possible by the combination of pulsed injection of gases and time resolved time-of-flight mass spectrometry. After an O2 pulse and a subsequent NO pulse were injected into a pellet of the Pt/Ba/Al2O3 catalyst, the time profiles of several gas products, NO, N2, NH3 and H2O, were obtained as a result of the release and reduction of NOx caused by H2 injection. Comparing the time profiles in another analysis, which were obtained using a model catalyst consisting of a flat 5 nmPt/Ba(NO3)2/cordierite plate, the release and reduction of NOx on Pt/Ba/Al2O3 catalyst that stored NOx took the following two steps; in the first step NO molecules were released from Ba and in the second step the released NO was reduced into N2 by H2 pulse injection. When this H2 pulse was injected in a large amount, NO was reduced to NH3 instead of N2.

A only small amount of H2O was detected because of the strong affinity for alumina support. We can analyze the NOx regeneration process to separate two steps of the NOx release and reduction by a detailed analysis of the time profiles using a two-step reaction model. From the result of the analysis, it is found that the rate constant for NOx release increased as temperature increase.  相似文献   


15.
In this work, a kinetic model is constructed to simulate sulfur deactivation of the NOx storage performance of BaO/Al2O3 and Pt/BaO/Al2O3 catalysts. The model is based on a previous model for NOx storage under sulfur-free conditions. In the present model the storage of NOx is allowed on two storage sites, one for complete NOx uptake and one for a slower NOx sorption. The adsorption of SOx is allowed on both of these NOx storage sites and on one additional site which represent bulk storage. The present model is built-up of six sub-models: (i) NOx storage under sulfur-free conditions; (ii) SO2 storage on NOx storage sites; (iii) SO2 oxidation; (iv) SO3 storage on bulk sites; (v) SO2 interaction with platinum in the presence of H2; (vi) oxidation of accumulated sulfur compounds on platinum by NO2. Data from flow reactor experiments are used in the implementation of the model. The model is tested for simulation of experiments for NOx storage before exposure to sulfur and after pre-treatments either with SO2 + O2 or SO2 + H2. The simulations show that the model is able to describe the main features observed experimentally.  相似文献   

16.
NO conversion to N2 in the presence of methane and oxygen over 0.03 at.%Rh/Al2O3, 0.51 at.%Pt/Al2O3 and 0.34 at.%Pt–0.03 at.%Rh/Al2O3 catalysts was investigated.

δ-Alumina and precious metal–aluminum alloy phases were revealed by XRD and HRTEM in the catalysts.

The results of the catalytic activity investigations, with temperature-programmed as well as steady-state methods, showed that NO decomposition occurs at a reasonable rate on the alloy surfaces at temperatures up to 623 K whereas some CH4 deNOx takes place on δ-alumina above this temperature. A mechanism for the NO decomposition is proposed herein. It is based on NO adsorption on the precious metal atoms followed by the transfer of electrons from alloy to antibonding π orbitals of NO(ads.) molecules. The CH4 deNOx was shown to occur according to an earlier proposed mechanism, via methane oxidation by NO2(ads.) to oxygenates and then NO reduction by oxygenates to N2.  相似文献   


17.
Preliminary studies on a series of nanocomposite BaO–Fe ZSM-5 materials have been carried out to determine the feasibility of combining NOx trapping and SCR-NH3 reactions to develop a system that might be applicable to reducing NOx emissions from diesel-powered vehicles. The materials are analysed for SCR-NH3 and SCR-urea reactivity, their NOx trapping and NH3 trapping capacities are probed using temperature programmed desorption (TPD) and the activities of the catalysts for promoting the NH3 ads + NO/O2 → N2 and NOx ads + NH3 → N2 reactions are studied using temperature programmed surface reaction (TPSR).  相似文献   

18.
A Pt–Re/Al2O3 reforming catalyst with different levels of chlorine content prior to reduction has been studied by various techniques such as combined STEM/EDX, TPR, H2 chemisorption and model reactions in order to investigate the effect of the chlorine content on the bimetallic particle formation. TPR, H2 chemisorption and model reactions show that chlorine inhibits the formation of bimetallic particles in the Pt–Re/Al2O3 catalyst. The effect of chlorine is, however, limited. Direct measurements by STEM/EDX analysis could not reveal any significant differences in alloy formation by varying the chlorine content from 0.6 to 1.5 wt.%. In comparison, the effect of adding water during reduction has a greater impact on the final state of the metal particles.  相似文献   

19.
Pt-based catalysts have been prepared using supports of different nature (γ-Al2O3, ZSM-5, USY, and activated carbon (ROXN)) for the C3H6-SCR of NOx in the presence of excess oxygen. Nitrogen adsorption at 77 K, pH measurements, temperature-programmed desorption of propene, and H2 chemisorption were used for the characterization of the different supports and catalysts. The performance of these catalysts has been compared in terms of de-NOx activity, hydrocarbon adsorption and combustion at low temperature, and selectivity to N2. Maximum NOx conversions for all the catalysts were achieved in the temperature range of 200–250°C. The order of activity was, Pt-USY>Pt/ROXNPt-ZSM-5Pt/Al2O3. At temperatures above 300°C only Pt/ROXN maintains a high activity caused by the consumption of the support, while the other catalysts present a strong deactivation. Propene combustion starts at the same temperature for all the catalytic systems (160°C). Complete hydrocarbon combustion is directly related to the acidity of the support, thus determining the temperature of the maximum NOx reduction. The support play an important role in the reaction mechanism through the hydrocarbon activation. N2O formation was observed for all the catalysts. N2 selectivity ranges from 15 to 30% with the order, Pt/ROXN>Pt-USYPt/Al2O3>Pt-ZSM-5. The catalytic systems exhibit a stable operation under isothermal conditions during time-on-stream experiments.  相似文献   

20.
Catalytic performance of Sn/Al2O3 catalysts prepared by impregnation (IM) and sol–gel (SG) method for selective catalytic reduction of NOx by propene under lean burn condition were investigated. The physical properties of catalyst were characterized by BET, XRD, XPS and TPD. The results showed that NO2 had higher reactivity than NO to nitrogen, the maximum NO conversion was 82% on the 5% Sn/Al2O3 (SG) catalyst, and the maximum NO2 conversion reached nearly 100% around 425 °C. Such a temperature of maximum NO conversion was in accordance with those of NOx desorption accompanied with O2 around 450 °C. The activity of NO reduction was enhanced remarkably by the presence of H2O and SO2 at low temperature, and the temperature window was also broadened in the presence of H2O and SO2, however the NOx desorption and NO conversion decreased sharply on the 300 ppm SO2 treated catalyst, the catalytic activity was inhibited by the presence of SO2 due to formation of sulfate species (SO42−) on the catalysts. The presence of oxygen played an essential role in NO reduction, and the activity of the 5% Sn/Al2O3 (SG) was not decreased in the presence of large oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号