首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The important adsorption components involved in the removal of trichloroethylene (TCE) by fibrous and granular activated carbons from aqueous solutions were systematically examined. Namely, adsorption of TCE itself (i.e., TCE vapor isotherms), water molecules (i.e., water vapor isotherms), and TCE in water (i.e., TCE aqueous phase isotherms) were studied, side-by-side, using 20 well-characterized surface-modified activated carbons. The results showed that TCE molecular size and geometry, activated carbon surface hydrophilicity, pore volume, and pore size distribution in micropores control adsorption of TCE at relatively dilute aqueous solutions. TCE adsorption increased as the carbon surface hydrophilicity decreased and the pore volume in micropores of less than 10 A, especially in the 5-8 A range, increased. TCE molecules appeared to access deep regions of carbon micropores due to their flat geometry. The results indicated that characteristics of both adsorbate (i.e., the molecular structure, size, and geometry) and activated carbon (surface hydrophilicity, pore volume, and pore size distribution of micropores) control adsorption of synthetic organic compounds from water and wastewaters. The important micropore size region for a target compound adsorption depends on its size and geometry.  相似文献   

2.
Long-term adsorption of phenanthrene to soils was characterized in a silt-loam (LHS), a sandy soil (SBS), and a podzolized soil (CNS) by use of the Polanyi-Manes model, a Langmuir-type model, and a black carbon-water distribution coefficient (K(BC)) at a relative aqueous concentration (C(e)/S(w)) of 0.002-0.32. Aqueous desorption kinetic tests and temperature-programmed desorption (TPD) were also used to evaluate phenanthrene diffusivities and desorption activation energies. Adsorption contribution in soils was 48-70% after 30 days and 64-95% after 270 days. Significant increases in adsorption capacity with aging suggest that accessibility of phenanthrene to fractions of SBS soil matrix was controlled by sorptive diffusion at narrow meso- and micropore constrictions. Similar trends were not significant for LHS silt-loam or CNS podzol. Analysis of TPD profiles reveal desorption activation energies of 35-53 kJ/mol and diffusivities of 1.6 x 10(-7-)9.7 x 10(-8) cm2/s. TPD tests also indicate that the fraction of phenanthrene mass not diffusing from soils was located within micropores and narrow width mesopores with a corresponding volume of 1.83 x 10(-5-)6.37 x 10(-5) cm3/g. These values were consistent with the modeled adsorption contributions, thus demonstrating the need for such complimentary analytical approach in the risk assessment of organic contaminants.  相似文献   

3.
Adsorption of the systemic insecticide disulfoton (diethyl S-[2-(ethylthio) ethyl] phosphorothiolothionate) by soil was studied using a wet slurry technique. Extraction of soils and solutions after equilibration showed that more disulfoton was lost from solution than could be extracted from soil, principally because of microbial alteration and adsorption by glass. In two contrasting soils equilibration was complete by 3 h and air-dry soils in the laboratory adsorbed similarly to the moist field soils from which they were derived. Adsorption was fully reversible if desorption took place immediately after uptake when soils were still wet, but the release was modified when the soils were allowed to dry thoroughly between adsorption and desorption. The empirical Freundlich isotherm fitted adsorption results for 17 different soils well. The isotherms had different curvatures but deviations from linearity were small so that linear isotherms provide good approximations. Comparison of the slopes of the best-fitting linear relationships showed that adsorption was closely related to the amount of organic matter in the soil.  相似文献   

4.
The kinetics of water uptake and redistribution in several soils and their components are studied using NMR relaxometry. Unlike the normal behavior observed in stable porous media, entry into micropores in the soil is a slow process as compared to entry into macro- and mesopores. This indicates that soils air-dried at ambient temperature include gel phases that have collapsed or reoriented, closing micropores, during drying. Wetting must then include the swelling processes that re-open micropores. This can even exhibit temperature dependence giving an "apparent activation energy" comparable to that of a chemical reaction, for example, ester hydrolysis. The processes of micropore opening may play a role in slow uptake of contaminants into soils.  相似文献   

5.
Potassium adsorption and release was investigated on samples from six field plots maintained at pH values ranging from 3.8 to 7.5. The slope of the adsorption isotherms, representing the K buffering power of the samples, increased with pH because of the associated increase in cation exchange capacity. Within the pH range 3.8–5.9 there was no difference between the isotherms determined over 10 days compared with 30 min, and the desorption curves were essentially the reverse of the adsorption curves. For the samples with pH 6.7 and 7.5, however, more K was adsorbed over the longer period, and the desorption curves showed hysteresis indicating that some fixation may have occurred. The apparent lack of K fixation in all but the samples of highest pH was attributed to the low clay and high humus content of the soil.  相似文献   

6.
Plasticized starch/clay composite films were prepared by casting aqueous solutions containing oxidized corn starch, different concentrations of glycerol as a plasticizer and 5% clay (sodium montmorillonite, Na+‐MMT) on the basis of dry starch. The water‐binding properties of the composite films were evaluated by water vapor sorption isotherms at room temperature and various relative humidities (RHs). Mechanical properties and abrasion resistance were also analyzed for the films with varying glycerol contents at 68% RH and room temperature. Changes in water sorption isotherms suggested that glycerol interacted with both water and starch in a complicated way. A saturation phenomenon of glycerol, depending on RH, was observed based on the isotherms. Above this saturation content, phase separation of the system occurred with the appearance of free glycerol. According to mechanical performance and abrasion resistance, as well as water vapor sorption of the starch blend films, the three‐stage transition was presented to be related to the state of glycerol in the blend system, i.e. adsorption of glycerol onto H‐bonding sites of starch, supersaturation of glycerol as plasticizer and further supersaturation of glycerol. Only above the supersaturation content can glycerol play a plasticizer role in starch‐based composites.  相似文献   

7.
The use of soil amendments has been proposed as a low input alternative for the remediation of metal polluted soils. However, little information is available concerning the stability, and therefore the longevity, of the remediation treatments when important soil parameters change. In this paper we investigate the effect of pH changes on the lability of heavy metals in soils treated with lime, beringite, and red mud using a modified isotopic dilution technique in combination with a stepwise acidification procedure. Significant amounts of nonlabile (fixed) Cu and Zn were found to be associated with colloids <0.2 microm in the solution phase. The results obtained indicated that the mobility of fixed colloidal metals is significant and increases with soil pH. This must be considered because most of the soil amendments are alkaline and increase soil pH. All the soil amendments significantly decreased the lability of Cd, Zn, and Cu in the soils as a whole. However, when the soils were re-acidified, the labile pool of metals increased sharply and in the case of lime and beringite, the lability of the metals was similar, at equal pH, to the untreated soil. In contrast the lability of metals in the red mud treated soils was always smaller than that in the untreated soils across the range of pH values tested. These results suggest that the mechanism of action of lime and beringite is similar and probably related to increased metal adsorption and precipitation of metal hydroxides and carbonates at high pH. In the case of red mud, a combination of pH dependent and independent mechanisms (possibly solid-phase diffusion or migration into micropores) may be responsible for the metal fixation observed.  相似文献   

8.
Protection of mesopore-adsorbed organic matter from enzymatic degradation   总被引:3,自引:0,他引:3  
Synthetic mesoporous alumina and silica minerals with uniform pore geometries, and their nonporous analogues, were used to test the role of mineral mesopores (2-50 nm diameter) in protecting organic matter from enzymatic degradation in soils and sediments. Dihydroxyphenylalanine (L-DOPA), a model humic compound, was irreversibly sorbed to both mineral types. The surface area-normalized adsorption capacity was greater for the mesoporous minerals relative to their nonporous analogues. The degradation kinetics of free and mineral-sorbed L-DOPA by the enzyme laccase was monitored in a closed cell via oxygen electrode. Relative to freely dissolved L-DOPA, nonporous alumina-sorbed substrate was degraded, on average, 90% more slowly and to a lesser extent (93%), likely due to laccase adsorption to alumina. In contrast, relative to free L-DOPA, degradation of nonporous silica-sorbed L-DOPA was enhanced by 20% on average. In the case of mesoporous alumina and silica-sorbed L-DOPA, the enzyme activity was 3-40 times lower than that observed for externally sorbed substrate (i.e., L-DOPA sorbed to nonporous minerals). These results provide strong evidence to support the viability of the mesopore protection mechanism for sequestration and preservation of sedimentary organic matter and organic contaminants. Nanopore adsorption/desorption phenomena may aid in explaining the slow degradation of organic contaminants in certain soils and sediments and may have implications for environmental remediation and biotechnological applications.  相似文献   

9.
The aim of the present work was to evaluate the surfactant-enhanced desorption of atrazine and linuron preadsorbed by soils and to study the effect of different characteristics of the components of soil-surfactant-herbicide systems on the efficiency of desorption. Two soils with organic matter contents of 3.16% and 7.28% and 11 surfactants, three of them anionic (SDS, LAS, and SDOSS) and 8 of them nonionic (Tween 80, Tween 20, Triton X-100, Triton X-114, Brij 35, Brij 30, Tergitol NP-10, and Tergitol 15S12), at concentrations 1.5 and 10 times the critical micellar concentration (cmc) were used. Adsorption-desorption studies were performed using a batch system, and the Freundlich model was applied to the isotherms except for some cases in which this was not possible. The desorption isotherms of both pesticides in aqueous medium pointed to the existence of hysteresis. The values of the hysteresis coefficients of the adsorption isotherms in water decreased in some cases while in others they increased in the presence of the surfactants, depending on the structure of these and on their concentration in water, on the organic matter content of the soil, and on the K(ow) of the herbicide. Parallel to the decrease in hysteresis, the percentage of herbicide desorption and desorption efficiency coefficient (E; ratio between the percentages of herbicide desorption in the presence of surfactant and those found in aqueous medium) increased. For a 10 cmc surfactant concentration, a linear relationship was seen between the E values and the absolute values of the cmc of the surfactants. Also, for the same surfactant, a linear relationship was seen between log E and the log of the absolute concentrations of surfactant in solution. The results obtained are of practical interest for the choice of surfactants for concrete problems involved in the recovery of pesticide-polluted waters using the surfactant-enhanced desorption pumping technique.  相似文献   

10.
The Guggenheim-Anderson-de Boer (GAB) three-parameter sorption equation has been used to interpret the adsorption and desorption isotherms of water vapour measured for 21 important cultural heritage wood species used in the past for panel paintings and woodcarving. The equation is capable of describing the full shape of the isotherms and yields meaningful physical parameters, especially the monolayer capacity from which the water accessible specific surface area can be obtained. It is demonstrated that average sorption isotherms can be derived using the GAB equation for the sorption data available for sets of specimens and that moisture properties of various wood specimens or chemically modified wood can be more easily compared.  相似文献   

11.
In situ remediation strategies are an alternative approach in the management of radioactive contaminated areas, especially when based on modification of soil properties by the addition of amendments. Here, this strategy is applied to reduce 137Cs and 90Sr soil-plant transfer in meadows from areas of Russia, Belarus, and Ukraine affected by the Chernobyl fallout. Meadows were established on podzolic and peaty soils. Amendments covered a wide range of materials, such as loamy and sandy soils, polygorskite clay, phosphorite, turf, and sapropel. Field experiments showed the poor efficiency of most of the materials: only the polygorskite clay provoked a notable reduction (1.5-2-fold) in 137Cs root uptake. Subsequent laboratory characterization showed the lack of significant changes in the radiocesium interception potential and soil solution composition in the amended soils, a fact that helped to explain the lack of effect on the reduction of transfer. Moreover, a laboratory methodology based on the quantification of the adsorption potential of the amendments and the reversibility of the adsorption process was applied. This methodology was first proposed for the correct selection of the suitable materials to be used to decrease radionuclide root uptake in future remediation actions and then validated with data of the previous field experiments.  相似文献   

12.
The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed to determine uranium adsorption isotherms and kinetic uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.  相似文献   

13.
In this work, densities and porosity parameters are determined on domestic and overseas soft- and hardwoods by application of pycnometric methods and mercury intrusion porosimetry (MIP). Great variability was found in bulk density, porosity and in the specific surface area. According to the pore size distribution, four pore size classes could be distinguished: macropores (radius 58?C2???m and 2?C0.5???m), mesopores (500?C80?nm), and micropores (80?C1.8?nm). The pore size distribution can vary even in the case of comparable pore volumes. The hardwoods, particularly the European diffuse-porous ones, show a higher amount of micropores, which represent the microvoids or cell wall capillaries. A?high cumulative pore volume can also be the result of a high content of micropores with poorer accessibility. The value of the total specific surface area from MIP measurements is, generally, below those values obtained by the water vapour adsorption technique. These results can provide information for further investigations on the sorption behaviour and the fluid intake as technological characteristics in industrial processes of impregnation and penetration of coating materials or adhesives.  相似文献   

14.
This paper investigates the effect of adsorption and regeneration temperature on the irreversible adsorption of a mixture of organic compounds typically emitted from automobile painting operations. Adsorption of the organic vapors mixture onto microporous beaded activated carbon (BAC) and regeneration of the saturated BAC were completed under different conditions. Results indicated that increasing the adsorption temperature from 25 to 35 or 45 °C increased heel buildup on BAC by about 30% irrespective of the regeneration temperature due to chemisorption. The adsorption capacity (for the first cycle) of the mixture onto the BAC at these three temperatures remained almost unchanged indicating chemisorption of some of these compounds onto the BAC. Increasing the regeneration temperature from 288 to 400 °C resulted in 61% reduction in the heel at all adsorption temperatures, possibly due to desorption of chemicals from narrow micropores. BET area and pore volumes of the BAC decreased proportionally to the cumulative heel. Pore size distribution and pore volume reduction confirmed that the heel was mainly built up in narrow micropores which can be occupied or blocked by some of the adsorbates.  相似文献   

15.
糯米粉的等温解吸特性一方面对分析其与周围环境之间的水分传递十分必要,另一方面,还可用于计算糯米粉内孔的特性,借此加深对水分吸附机理的了解。本实验采用静态称质量法在10、20、30℃条件下测定糯米粉在10个水分活度解吸后的平衡水分含量,然后采用4个等温吸附模型对实验结果进行拟合,并分析糯米粉的孔特性。研究结果表明:糯米粉中水分的解吸属于典型的Ⅱ型吸附;Lewicki模型最能描述同一温度条件下的等温解吸过程,而GDW模型能够同时描述温度和水分活度对平衡水分含量的影响。糯米粉中同时存在微孔和介孔;孔径分布为单态分布,仅在微孔区域出现一单峰,温度变化仅对该峰的峰值产生影响;微孔体积随温度降低而增大;糯米粉的吸附面具有分形特性,随温度降低吸附表面的多孔性增强,单位吸附面积增大,最终导致吸附能力增强。  相似文献   

16.
The sorption/desorption and long-term fate of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was examined using sterilized and nonsterilized soils. Two soils were used that differ mainly by the amount of total organic carbon (TOC): an agricultural topsoil (VT, 8.4% TOC) and a sandy soil (SSL, 0.33% TOC). The adsorption isotherms performed at room temperature were well-described by a linear model, which led to sorption distribution coefficients of 2.5 and 0.7 L kg(-1) for VT and SSL soils, respectively. The organic content of soil did not significantly affect HMX sorption. Over a period of 20 weeks, HMX degraded (60% disappearance) in static anaerobic nonsterile VT soil preparations. In separate experiments using UL-[14C]-HMX, 19% mineralization (liberated 14CO2) was obtained in 30 weeks. In addition, four nitroso derivatives of HMX were detected. Knowing the sorption/desorption behavior and the long-term fate of HMX in soil will help assess the effectiveness of natural attenuation for HMX removal.  相似文献   

17.
Sorption of phenanthrene by reference smectites   总被引:1,自引:0,他引:1  
Fate and behavior of nonionic hydrophobic organic compounds (HOCs) in the environment is mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of HOCs in the environment. We used phenanthrene as a probe to explore the potential of reference smectites to sorb HOCs from aqueous solution. Batch experiments were used to construct phenanthrene sorption isotherms, and possible sorption mechanisms were inferred from the shape of the isotherms. Our results demonstrate that smectites can retain large amounts of phenanthrene from water. Phenanthrene sorption capacities of the reference smectites investigated in this study were comparable to those of soil clays containing a considerable amount of organic matter. Hectorite exhibited the highest sorption affinity and capacity followed by Panther Creek montmorillonite. The lack of correlation between Freundlich sorption constants (K'f) and indices of charge or hydrophobicity suggests that sorption of phenanthrene by smectites is primarily a physical phenomenon. Capillary condensation into a network of nanoor micropores created by quasicrystals is likely to be a dominant mechanism of phenanthrene retention by smectites.  相似文献   

18.
Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.  相似文献   

19.
Black carbon (BC) plays a potentially important role in the availability of pollutants in soils and sediments. Recent evidence points to the possible attenuation of the high surface activity of raw BC by natural substances. We studied the effects of soil humic (HA) and fulvic (FA) acids on the surface properties and affinity for organic compounds of synthesized wood charcoal. Char powder suspended in a solution of HA or FA was loaded with organic matter via adsorption, evaporation of the water, or coflocculation with Al3+. These treatments were chosen to simulate initial and more advanced stages of environmental exposure. Coevaporation dramatically reduced the N2 Brunauer-Emmett-Teller total surface area of the char, but only moderately the CO2 cumulative surface area up to 1.4 nm. Organic compound adsorption was suppressed in proportion to molecular size, benzene < naphthalene < phenanthrene and 1,2,4-trichlorobenzene < phenanthrene, for humics in the adsorbed and coflocculated states, respectively. Humic substances also increased the linearity of the isotherms. The model we propose assumes that humic substances are restricted to the external surface where they act as pore blocking agents or competitive adsorbates, depending on the temperature and adsorbate size. Nitrogen is blocked from the internal pore space due to stiffness at 77 K of humic strands extending into pore throats, giving an artificially low surface area. Together with previous results, this finding indicates that N2 may not detect BC microporosity in geosorbents. At higher temperatures (CO2, 273 K; organics, 293 K), humic strands are more flexible, allowing access to interior pores. The counterintuitive molecular size dependence of adsorption suppression by humics is due to a molecular sieving effect in pores in which the adsorption space available to the organic compound is more and more restricted to external sites.  相似文献   

20.
Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. In this study, Triton-100 (TX) was selected to study its effect on the sorption and desorption of two pesticides (Atrazine and Diuron) from different primary soil size fractions (clay, silt, and sand fractions) under equilibrium sorption and sequential desorption. Soil properties, TX sorption, and pesticide sorption and desorption all exhibited significant particle-size dependence. The cation exchange capacity (CEC) of the bulk soils and the soil fractions determined TX sorption capacity, which in turn determined the desorption efficiency. Desorption of pesticide out of the clay raction is the limiting factor in a surfactant-aided washing system. The solubilization efficiency of the individual surfactant micelles decreased as the amount of surfactant added to the systems increased. Thus, instead of attempting to wash the bulk soil, a better strategy might be to either (1) use only the amount of surfactant that is sufficient to clean the coarse fraction, then separate the fine fraction, and dispose or treat it separately, or (2) to separate the coarse fractions mechanically and then treatthe coarse and fine fractions separately. These results may be applicable to many other hydrophobic organic compounds such as polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) strongly sorbed onto soils and sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号