首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An electrospray ionization tandem mass spectrometry (ESI-MS/MS) strategy employing the thymine-selective KMnO4 oxidation reaction to detect conformational changes and ligand binding sites in noncovalent DNA/drug complexes is reported. ESI-MS/MS is used to detect specific mass shifts of the DNA ions that are associated with the oxidation of thymines. This KMnO4 oxidation/ESI-MS/MS approach is an alternative to conventional gel-based oxidation methods and affords excellent sensitivity while eliminating the reliance on radiolabeled DNA. Comparison of single-strand versus duplex DNA indicates that the duplexes exhibit a significant resistance to the reaction, thus confirming that the oxidation process is favored for unwound or single-strand regions of DNA. DNA complexes containing different drugs including echinomycin, actinomycin-D, ethidium bromide, Hoechst 33342, and cis-C1 were subjected to the oxidation reaction. Echinomycin, a ligand with a bisintercalative binding mode, was found to induce the greatest KMnO4 reactivity, while Hoechst 33342, a minor groove binder, caused no increase in the oxidation of DNA. The oxidation of echinomycin/DNA complexes containing duplexes with different sequences and lengths was also assessed. Duplexes with thymines closer to the terminal ends of the duplex demonstrated a greater increase in the degree of oxidation than those with thymines in the middle of the sequence. Collisional activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) experiments were used to determine the site of oxidation based on oligonucleotide fragmentation patterns.  相似文献   

2.
L‐cysteine induces the aggregation of Au nanoparticles (NPs), resulting in a color transition from red to blue due to interparticle plasmonic coupling in the aggregated structure. The hemin/G‐quadruplex horseradish peroxidase‐mimicking DNAzyme catalyzes the aerobic oxidation of L‐cysteine to cystine, a process that inhibits the aggregation of the NPs. The degree of inhibition of the aggregation process is controlled by the concentration of the DNAzyme in the system. These functions are implemented to develop sensing platforms for the detection of a target DNA, for the analysis of aptamer‐substrate complexes, and for the analysis of L‐cysteine in human urine samples. A hairpin DNA structure that includes a recognition site for the DNA analyte and a caged G‐quadruplex sequence, is opened in the presence of the target DNA. The resulting self‐assembled hemin/G‐quadruplex acts as catalyst that controls the aggregation of the Au NPs. Also, the thrombin‐binding aptamer folds into a G‐quadruplex nanostructure upon binding to thrombin. The association of hemin to the resulting G‐quadruplex aptamer‐thrombin complex leads to a catalytic label that controls the L‐cysteine‐mediated aggregation of the Au NPs. The hemin/G‐qaudruplex‐controlled aggregation of Au NPs process is further implemented for visual and spectroscopic detection of L‐cysteine concentration in urine samples.  相似文献   

3.
An electrospray ionization mass spectrometry (ESI-MS) method for quantifying protein-ligand complexes that cannot be directly detected by ESI-MS is described. The proxy protein ESI-MS method combines direct ESI-MS binding measurements with competitive protein-ligand binding. To implement the method, a proxy protein (P(proxy)), which interacts specifically with the ligand of interest with known affinity and can be detected directly by ESI-MS, is used to quantitatively monitor the extent of ligand binding to the protein of interest. A mathematical framework for establishing the association constant (K(a)) for protein-ligand binding by the proxy protein ESI-MS method, implemented with a P(proxy) containing a single ligand binding site, is given. A modified form of the proxy protein ESI-MS method, which accounts for real-time changes in ligand concentration, is also described. The reliability of these methods is demonstrated for the interactions between the 180 kDa wildtype homotrimeric tailspike protein of the bacteriophage P22 and its endorhamnosidase point mutant (D392N) with its ligands comprising two and three O-antigen repeats from Salmonella enterica serovar Typhimurium: octasaccharide ([α-Gal-(1→2)-[α-Abe-(1→3)]-α-Man-(1→4)-α-Rha](2)) and dodecasaccharide ([α-Gal-(1→2)-[α-Abe-(1→3)]-α-Man-(1→4)-α-Rha](3)). A 27 kDa single chain antibody, which binds to both ligands, served as P(proxy). The results of binding measurements performed at 10 and 25 °C are in excellent agreement with K(a) values measured previously using a fluorescence quenching assay.  相似文献   

4.
Noncovalent duplex DNA/drug complexes formed between one of three 14-base pair non-self-complementary duplexes with variable GC content and one of eight different DNA-interactive drugs are characterized by infrared multiphoton dissociation (IRMPD), and the resulting spectra are compared to conventional collisionally activated dissociation (CAD) mass spectra in a quadrupole ion trap mass spectrometer. IRMPD yielded comparable information to previously reported CAD results in which strand separation pathways dominate for complexes containing the more AT-rich sequences and/or minor groove binding drugs, whereas drug ejection pathways are prominent for complexes containing intercalating drugs and/or duplexes with higher GC base content. The large photoabsorptive cross section of the phosphate backbone at 10.6 mum promotes highly efficient dissociation within short irradiation times (<2 ms at 50 W) or using lower laser powers and longer irradiation times (<15 W at 15 ms), activation times on par with or shorter than standard CAD experiments. This large photoabsorptivity leads to a controllable ion activation method which can be used to produce qualitatively similar spectra to CAD while minimizing uninformative base loss dissociation pathways or instead be tuned to yield a high degree of secondary fragmentation. Additionally, the low-mass cutoff associated with conventional CAD plays no role in IRMPD, resulting in richer MS/MS information in the low m/z region. IRMPD is also used for multiadduct dissociation in order to increase MS/MS sensitivity, and a two-stage IRMPD/IRMPD method is demonstrated as a means to give specific DNA sequence information that would be useful when screening drug binding by mixtures of duplexes.  相似文献   

5.
Single-stranded telomeric DNA tends to form a four-base-paired planar structure termed G-quadruplex. This structure was easily formed in vitro in the presence of monovalent cations. However, the existence of this structure in native human telomeres is unclear. Here we address this important question through the distinctive properties of 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC) upon binding to various DNA structures. Although the fluorescence of BMVC increases significantly in the presence of DNA, BMVC has high sensitivity and binding preference to quadruplex d(T(2)AG(3))(4) over duplex DNA. In addition, the fluorescent emissions were characterized around 575 nm for quadruplex d(T(2)AG(3))(4) and 545 nm for most of duplex DNA. The 575-nm fluorescence emissions were detected in the mixtures of 2 nM BMVC with the chromosomal DNA that were extracted from human cells, suggesting the presence of quadruplex structure in human nucleus. Further analyzing the BMVC fluorescence at the ends of metaphase chromosomes and other regions of chromosomes, we detected the quadruplex-binding BMVC fluorescence at telomere-proximal regions. Together these results provide the first evidence for the presence of quadruplex structures in human telomeres.  相似文献   

6.
In this work, the kinetics and dissociation constant for the binding of a biotin-modified oligonucleotide to microparticle-immobilized avidin were measured. Avidin has been immobilized by both covalent coupling and bioaffinity capture to a surface prefunctionalized with biotin. The measured rate and equilibrium dissociation constants of avidin immobilized by these different methods have been compared with those for nonimmobilized avidin. We found that immobilization resulted in both a decrease in the rate of binding and an increase in the rate of dissociation leading to immobilized complexes having equilibrium dissociation constants of 7 ± 3 × 10(-12) M, higher than the value measured for the complex between biotin-modified oligonucleotide and nonimmobilized avidin and approximately 4 orders of magnitude larger than values for the wild-type avidin-biotin complex. Immobilized complex half-lives were found to be reduced to 5 days, which resulted in biotin ligands migrating between protein attached to different particles. Different immobilization methods showed little variation in complex stability but differed in total binding and nonspecific biotin-modified oligonucleotide binding. These findings are critical for the design of multiplexed assays where probe molecules are immobilized to biosensors via the avidin-biotin interaction.  相似文献   

7.
Mo J  Håkansson K 《Analytical chemistry》2007,79(20):7893-7898
We have implemented gas-phase hydrogen/deuterium exchange (HDX) experiments in the external collision cell of a hybrid quadrupole-Fourier transform ion cyclotron resonance mass spectrometer. In this configuration, multiply charged oligonucleotide anions undergo significant exchange with D(2)S at reaction intervals ranging from 0.11 to 60.1 s. For DNA homohexamers, relative exchange rates were dC(6) approximately dA(6) > dG(6) > dT(6), correlating with the gas-phase acidities of nucleobases (C > A > T > G), except for guanine. Our results are consistent with a relay mechanism in which D(2)S interacts with both a backbone phosphate group and a neutral nucleobase through hydrogen bonding. We propose that the faster exchange of polyguanosine compared to polythymidine is due to the larger size of guanine and the orientation of its labile hydrogens, which may result in gas-phase conformations more favorable for forming complexes with D(2)S. Similar trends were observed for RNA homohexamers, although their HDX rates were faster than for DNA, suggesting they can also exchange via another relay process involving the 2'-hydroxyl group. HDX of DNA duplexes further supports the involvement of nucleobase hydrogens because duplexes exchanged slower than their corresponding single strands, presumably due to the intermolecular hydrogen bonds between nucleobases. This work constitutes the first investigation of the mechanisms of oligonucleotide gas-phase HDX. Our results on duplexes show promise for application of this strategy to the characterization of structured nucleic acids.  相似文献   

8.
A novel light‐operated vehicle for targeted intracellular drug delivery is constructed using photosensitizer‐incorporated G‐quadruplex DNA‐capped mesoporous silica nanoparticles. Upon light irradiation, the photosensitizer generates ROS, causing the DNA capping to be cleaved and allowing cargo to be released. Importantly, this platform makes it possible to develop a drug‐carrier system for the synergistic combination of chemotherapy and PDT for cancer treatment with spatial/temporal control. Furthermore, the introducing of targeting ligands further improves tumor targeting efficiency. The excellent biocompatibility, cell‐specific intracellular drug delivery, and cellular uptake properties set up the basis for future biomedical application that require in vivo controlled, targeted drug delivery.  相似文献   

9.
10.
We report a new, mass spectrometry-based method for measuring affinity constants for specific metal ion binding to DNA, particularly for quadruplex DNA. This method, which is applicable to other systems, utilizes the gas-phase signal fractions, as determined by mass spectrometry, from the bound and unbound species as input into a mathematical model that determines various parameters, one of which is the binding affinity constant. The system used to develop and test the model was the thrombin-binding aptamer, an appropriate quadruplex structure that binds both K+ and Sr2+ cations. Using this method, we measured the binding constants of potassium and strontium cations with the quadruplex structure to be 5000 and 240 nM, respectively. We then applied the method to measure the change in enthalpy of the binding of strontium cations to the thrombin binding aptamer. The DeltaH for this interaction is -71 kJ/mol (-17 kcal/mol). The binding constant measurements are consistent with earlier measurements on the same system, and the measured change in enthalpy is in excellent agreement with previous work.  相似文献   

11.
Promoted by the localized surface plasmon resonance nanotechnology, a simple and sensitive plasmonic aptamer nanosensor (nanoaptasensor) on an individual Au@Ag core‐shell nanocube (Au@Ag NC) has been proposed for real‐time monitoring of the formation process of G‐quadruplex structures and label‐free analysis of potassium ions (K+). In particular, the analysis of the thermodynamic parameters indicates that there are two types of binding states accompanied with a remarkable change of free energy (ΔG) in the sequential folding process of telomere DNA sequence. This nanoaptasensor has raised promising applications in monitoring the dynamic process of the structural switch of the G‐quadruplex.  相似文献   

12.
This study is an attempt to have a better understanding of the physicochemical interaction between a novel anticancer drug, Gatifloxacin (GTFX) and its biological receptor, DNA. The eventual purpose is to design drugs which interact more with DNA. Considering the physicochemical properties of the drug as well as the mechanism by which it interacts with DNA, it should eventually allow the rational design of novel anticancer or antiviral drugs. Molecular modeling on the complex formed between Gatifloxacin and DNA presented the full ability of the drug for participating in the formation of a stable intercalation site. Besides, the molecular geometries of Gatifloxacin (GTFX) and the DNA bases (Adenine, Guanine, Cytosine and Thymine) were optimized with the aid of B3LYP/6-31G? method. The properties of the isolated intercalator and its stacking interactions with the adenine?thymine (AT) and guanine?cytosine (GC) nucleic acid base pairs, were studied using DFTB method, (an approximate version of the DFT method) that was extended to cover the London dispersion energy. The B3LYP/6-31G? stabilization energies of the intercalator?base pair complexes were found to be ? 26.99 and ? 37.62 kcal/mol for AT?GTFX and GC?GTFX, respectively. It was completed that the dispersion energy and the electrostatic interaction contributed to the stability of the intercalator?DNA base pair complexes.  相似文献   

13.
The cover image depicts biochips based on responsive nanoaggregates made from stoichiometric complexes between a cationic polythiophene and an appropriate DNA aptamer. These structures undergo a conformational transition from an unfolded to a folded (G‐quadruplex) structure in the presence of a specific target protein that results in a significant increase of the fluorescence intensity, as reported on p. 2703 by Leclerc and co‐workers.  相似文献   

14.
The high frequency of single nucleotide polymorphisms (SNPs) in the human genome makes them ideal genetic markers for mapping, diagnosing disease-related alleles, and identifying SNPs that contribute to drug response differences between individuals. Here we report a novel assay utilizing a single nucleotide primer extension (SNuPE) and electrospray ionization mass spectrometry (ESI-MS) detection for the analysis of SNPs. In contrast to most SNuPE genotyping technologies that detect the extended primer product, the novel Survivor assay detects the unreacted dideoxynucleotides (ddNTPs) remaining or surviving in solution following a SNuPE. This assay involves a simple analysis of the same four ddNTP analytes, regardless of the SNP being investigated, and either single or double-stranded DNA can be used to genotype a SNP, without any labeling requirements of the ddNTPs or oligonucleotide primers. We have tested and blindly validated the Survivor assay by genotyping the C/T SNP at -857 of the human TNFalpha promoter gene. The results obtained are in agreement with the control sequencing data. The results demonstrate that the homogeneous Survivor assay with ESI-MS detection offers advantages in simplicity, accuracy, specificity, and sensitivity. Additional advantages of the method include enhanced hybridization efficiencies in this solution-phase assay and the elimination of immobilized primers for the isolation of single-stranded DNA. With a one-well reaction and an automation platform being developed, the Survivor assay provides a powerful new tool for large-scale SNP analysis and screening.  相似文献   

15.
Kim J  Crooks RM 《Analytical chemistry》2007,79(23):8994-8999
A new method for fabrication of RNA microarrays is described. The approach involves cohybridization of a short, biotinylated DNA oligonucleotide and an RNA probe sequence to DNA templates spotted onto a master array. Next, the short DNA sequence and the RNA probe are linked using a T4 DNA ligase. Finally, a poly(dimethylsiloxane) (PDMS) monolith modified on the surface with streptavidin is brought into conformal contact with the master array. This results in binding of the biotinylated DNA/RNA oligonucleotides to the PDMS surface. When the two substrates are mechanically separated, the DNA/RNA oligonucleotides transfer to the PDMS replica, and the DNA oligonucleotides remaining on the master array are ready to template another RNA replica array. This sequence can be repeated for at least 18 cycles using a single master array. RNA arrays consisting of up to three different oligonucleotide sequences and consisting of up to 2500 individual approximately 70 microm spots have been prepared.  相似文献   

16.
Four oligonucleotides (fluorescently labeled and unlabeled 16- and 90-mer), each containing a single adduct of benzo[a]pyrene diol epoxide (BPDE), were synthesized and used to study the binding stoichiometry between the DNA adduct and its antibody. The free oligonucleotide and its complexes with mouse monoclonal antibody were separated using capillary electrophoresis and detected with laser-induced fluorescence (LIF). Two complexes, representing the 1:1 and 1:2 stoichiometry between the antibody and the DNA adduct, were clearly demonstrated. The stoichiometry depended upon the relative concentrations of the antibody and the DNA adducts. A new approach examining the binding of the antibody with a mixture of a tetramethylrhodamine (TMR)-labeled and unlabeled BPDE-16-mer revealed insights on ligand redistribution and exchange between the labeled and unlabeled BPDE-16-mer oligonucleotides in the complexes. The observation of this unique behavior has not been possible previously with other binding studies. A mixture of the antibody with the TMR-labeled BPDE- 16-mer and an unlabeled BPDE-90-mer further revealed the formation of three fluorescent complexes: antibody with one TMR-BPDE-16-mer molecule, antibody with two TMR-BPDE- 16-mer molecules, and antibody with one TMR-BPDE-16-mer and one BPDE-90-mer. The three complexes clearly demonstrated binding stoichiometry and ligand redistribution/exchange.  相似文献   

17.
For detection and differentiation of isomeric flavonoids, electrospray ionization mass spectrometry is used to generate silver complexes of the type (Ag + flavonoid)+. Collisionally activated dissociation (CAD) of the resulting 1:1 silver/flavonoid complexes allows isomer differentiation of flavonoids. Eighteen flavonoid diglycosides constituting seven isomeric series are distinguishable from each other based on the CAD patterns of their silver complexes. Characteristic dissociation pathways allow identification of the site of glycosylation, the type of disaccharide (rutinose versus neohesperidose), and the type of aglycon (flavonol versus flavone versus flavanone). This silver complexation method is more universal than previous metal complexation methods, as intense silver complexes are observed even for flavonoids that lack the typical metal chelation sites. To demonstrate the feasibility of using silver complexation and tandem mass spectrometry to characterize flavonoids in complex mixtures, flavonoids extracted from grapefruit juice are separated by high-performance liquid chromatography and analyzed via a postcolumn complexation ESI-MS/MS strategy. Diagnostic fragmentation pathways of the silver complexes of the individual eluting flavonoids allow successful identification of the six flavonoids in the extract.  相似文献   

18.
Photochemical cross-linking of human replication protein A (hRPA) to oligonucleotide dT30 was performed to enable identification of amino acid sequences that reside in the DNA-binding domain. A nucleoprotein complex, with a 1:1 protein/DNA stoichiometry, was separated from unreacted enzyme and oligonucleotide by SDS-polyacrylamide gel electrophoresis and subjected to in-gel digestion with trypsin. Three cross-linked tryptic peptides (nucleopeptides) of hRPA70xdT30 (T43, T28/29, and a truncated T24/25) were isolated. Combined mass spectrometric and C-terminal proteolysis experiments showed that at least one amino acid in the segment 235-ATAFNE-240 (located in T24/25), at least one out of the two residues sequence 269-FT-270 (located in T28/29), and at least one from the sequence 383-VSDF-386 (located in T43) were involved in cross-linking. These peptides contained aromatic residues (F238, F269, and F386 respectively) that can form base-stacking interactions with the DNA and were, therefore, most likely to be involved in cross-linking. The results obtained in this study demonstrate that a combination of exhaustive proteolysis and MALDI TOF MS can localize the sites of DNA binding to very short sequences of amino acids. Data so acquired can confirm or amend information obtained from site-directed mutagenesis and X-ray crystallography.  相似文献   

19.
Measurement of the proliferation of lymphocytes and other high-turnover cell populations in vivo can be accomplished through the incorporation of an isotopically labeled DNA precursor into actively dividing cells and the subsequent determination of the isotope enrichment in the isolated genomic DNA from selected cell populations. Two published gas chromatography/mass spectrometry (GC/MS) methods were successfully modified by our laboratory whereby a postinjection methylation reaction, rather than silylation or acetylation, was used to form a volatile derivative of deoxyadenosine (dA). We also developed a second robust microcapillary liquid chromatography-electrospray ionization (microLC-ESI)/MS method that is faster and more sensitive than the GC/MS method and does not require sample derivatization. Following administration of [6,6-(2)H(2)]-glucose to human immunodeficiency virus-infected patients, peripheral blood was drawn; cells were obtained by lymphapheresis and fractionated. DNA was isolated from the desired cell subtypes and enzymatically hydrolyzed to the free deoxyribonucleosides. The digest was analyzed using both capillary GC/MS and microLC/ESI-MS to measure the levels of the dA and [(2)H(2)]-dA or their reaction products. Sample enrichments were calculated by comparison to standard curves prepared from dA and [(2)H(2)]-dA. The microLC/ESI-MS method required fewer cells, less sample preparation, shorter analysis times, and a single calibration curve. Overall, the microLC/ESI-MS method is superior to the GC/MS method in terms of precision and accuracy, while providing a 4-fold increase in sensitivity (from 20 pmol at 0.2% [(2)H(2)]-dA enrichment to 5 pmol at 0.1% [(2)H(2)]-dA enrichment).  相似文献   

20.
Jung Y  Lee JM  Jung H  Chung BH 《Analytical chemistry》2007,79(17):6534-6541
A versatile biolinker for efficient antibody immobilization was prepared by site-specific coupling of protein G to DNA oligonucleotide. This protein G-DNA conjugate ensures the controlled immobilization of an antibody to the intended area on the surface of bioassay chips or particles, while maintaining the activity and orientation of the bound antibody. Streptococcus protein G tagged with a cysteine residue at the N-terminus was chemically linked to amine-modified, single-stranded DNA. SPR analysis indicated that the protein G-DNA conjugates sequence-specifically bind to complementary surface-bound DNA probes. More importantly, the resulting protein G, which is hybridized onto the DNA surface, possesses a greater antibody/antigen binding ability than even properly oriented protein G linked on the chip surface by chemical bonding. Antibody targeting on glass slides could also be achieved by using this linker system without modifying or spotting antibodies. Moreover, the protein G-DNA conjugate provided a simple but effective method to label DNA-functionalized gold nanoparticles with target antibodies. The DNA-linked protein G construct introduced in this study offers a useful strategy to manage antibody immobilization in many immunoassay systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号