首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
SH-PTP1 is a protein-tyrosine phosphatase preferentially expressed in hematopoietic cells and bearing two SH2 (src homology-2) domains. In the human megakaryocytic cell line Dami, lysophosphatidic acid (LPA) promoted a rapid increase in SH-PTP1 phosphorylation on both serine and tyrosine residues. Only tyrosine phosphorylation was significantly inhibited by pertussis toxin and by the protein kinase C inhibitor GF109203X. Moreover, SH-PTP1 was phosphorylated upon challenge with other agonists acting via G-protein-coupled receptors such as alpha-thrombin, epinephrine, and ADP, whereas the closely related protein-tyrosine phosphatase SH-PTP2 failed to share such a regulation in Dami cells. We developed an in vitro assay that reproduced LPA-dependent phosphorylation of SH-PTP1 in a cell-free system. The fusion protein glutathione S-transferase-beta-adrenergic receptor kinase 1-(495-689) or the transducin subunit Galphat-GDP, which act as specific antagonists of Gbetagamma, inhibited SH-PTP1 phosphorylation. Moreover, purified transducin Gbetagamma subunits mimicked the effect of LPA. Finally, stable expression of beta-adrenergic receptor kinase 1-(495-689) in Dami cells resulted in the inhibition of SH-PTP1 as a specific target of protein kinases linked to G-protein-coupled receptors via Gbetagamma subunits.  相似文献   

3.
We have reported that high glucose conditions (27 mM for 4 days) induces activation of protein tyrosine phosphatases (PTPases) which are associated with impaired insulin signaling in Rat 1 fibroblasts expressing human insulin receptors [Maegawa, H. et al. (1995) J. Biol. Chem. 270, 7724-7730]. In this study, we found increased mRNA-levels of a non-receptor type PTPase, protein tyrosine phosphatase 1B (PTP1B), and receptor type PTPases, leukocyte common antigen-related phosphatase (LAR), and LAR-related phosphatase (LRP), under high glucose conditions. In accordance with these results, LAR content was significantly increased, whereas LRP content was not increased. Cytosolic PTP1B content was increased, but membrane-associated PTP1B content showed no detectable change. Pioglitazone, a thiazolidinedione, normalized increased cytosolic PTPase activity through reduction of cytosolic PTP1B content, but it had no effect on mRNA levels of these PTPases. Under the high glucose condition, we also found that epidermal growth factor (EGF)-stimulated signaling, including tyrosine-phosphorylation of EGF receptor and phosphatidylinositol 3'-kinase activities, was attenuated. Nevertheless, pioglitazone failed to restore the attenuated EGF-signaling. These results indicate that the high glucose conditions cause dysfunction of EGF receptor. However, the increased cytosolic PTP1B content is not involved in the abnormal regulation of EGF-signaling, in contrast to insulin-signaling.  相似文献   

4.
OBJECTIVE: To assess, in the human endometrial cell line HEC-1-A, the presence of protein tyrosine phosphatase 1D (PTP1D) and the possible regulation of its mRNA expression by mitogens such as forskolin (an agent that increases intracellular cyclic adenosine monophosphate [cAMP] levels), epidermal growth factor (EGF), and insulin-like growth factor-I (IGF-I). METHODS: Cells were grown to confluence and maintained in serum-free media for 24 hours before treatment. Cells were exposed to forskolin, EGF, and IGF-I for increasing time periods (0, 1, 3, 6, and 24 hours), and PTP1D mRNA expression was determined by Northern blot analysis. In addition, cells were incubated with increasing doses of forskolin (final concentrations: 1, 5, 10, 20, and 30 mumol/L) for 6 hours. RESULTS: When treated with the various mitogens, cells increased their stimulation of PTP1D mRNA expression in a time- and dose-dependent fashion. Specifically, forskolin, EGF, and IGF-I induced maximal mRNA expression at 6, 3, and 6 hours, respectively. Expression induced by forskolin, EGF, and IGF-I was five, three, and six times control levels, respectively. At a dose of 10 mumol/L, forskolin induced PTP1D mRNA expression almost two times higher than control values. CONCLUSION: These data suggest that in human endometrial carcinomas, cAMP, EGF, and IGF-I may regulate the expression of PTP1D mRNA, which may, in turn, play a role in uncontrolled cell proliferation and neoplastic transformation.  相似文献   

5.
PD153035 is reported to be a specific and potent inhibitor of the epidermal growth factor (EGF) receptor tyrosine kinase and, to a lesser degree, of the closely related HER2/neu receptor. We show that PD153035 inhibits EGF-dependent EGF receptor phosphorylation and suppresses the proliferation and clonogenicity of a wide panel of EGF receptor-overexpressing human cancer cell lines. EGF receptor autophosphorylation in response to exogenous EGF was completely inhibited at PD153035 concentrations of >75 nM in cells overexpressing the EGF receptor. In contrast, PD153035 only reduced heregulin-dependent tyrosine phosphorylation in HER2/neu-overexpressing cell lines at significantly higher concentrations (1400-2800 nM). PD153035 exposure did not affect the expression of either EGF receptors or HER2/neu. PD153035 caused a dose-dependent growth inhibition of EGF receptor-overexpressing cell lines at low micromolar concentrations, and the IC50 in monolayer cultures was less than 1 microM in most cell lines tested. At doses of up to 2.5 microM, the IC50 for HER2/neu-overexpressing cells was not reached. In colony-forming assays, the PD153035 growth-inhibitory activity in cultures driven by endogenous (autocrine) ligand was correlated with EGF receptor number, with higher activity in cells expressing higher numbers of EGF receptors and only minimal activity in cells expressing normal numbers of EGF receptors but high HER2/neu levels. PD153053 also abolished all growth effects mediated by the addition of exogenous EGF; this condition could be reversed upon removal of the compound. Cotreatment with C225, an anti-EGF receptor-blocking monoclonal antibody, further enhanced the antitumor activity of PD153035, suggesting mechanisms of action for C225 other than competition with ligand binding. This latter finding also suggests that combined anti-EGF receptor strategies may be of enhanced benefit against tumors with high levels of EGF receptor expression.  相似文献   

6.
A number of local regulatory factors including polypeptide growth factors like epidermal growth factor (EGF) have been suggested to play an active role within the human ovary. In order to understand the physiology of EGFs action, it is essential to demonstrate and characterize the receptors for this growth factor on ovarian cells which was the aim of this study. We demonstrate using [125I]EGF that specific high affinity sites with Ka for this ligand reaching 2.2 x 10(-9) M for growing cultures of human granulosa-lutein cells and 0.13 x 10(-9) M for the membrane fraction prepared from these cells. Additionally we have identified a 170 kD protein as the EGF receptor with the help of affinity cross linking and immunoblotting procedures. Furthermore, we observed that a pretreatment of granulosa lutein cells with EGF for a short duration (0-30 min) leads to a dose- and time dependent upregulation of the LH-receptor-coupled adenylate cyclase activity. A maximal effect (159 +/- 12% increase compared with untreated cells, P < 0.001, n = 4) was reached at 10-15 min with 10-20 ng/ml EGF. Specific inhibition of the receptor tyrosine kinase activity abolished the observed EGF-induced sensitization of the cyclase activity. Differentiation of granulosa cells in vivo is a prerequisite for ovulation and later transformation into highly differentiated lutein cells, a process depending on the presence of ligands that elevate cAMP production. The observed modulation of the adenylate cyclase by EGF could be a regulatory component for the differentiated status of the granulosa cells during different phases of the cycle.  相似文献   

7.
Growth factors may play a role in the formation of prostaglandins (PG) by cerebral blood vessels during development or reaction to injury. In smooth muscle cultures isolated from murine cerebral microvessels PG production was induced with either serum or epidermal growth factor (EGF). Prostaglandin H synthase (PGHS) activity peaked at 6 h after the addition of 10% serum or 50 ng/ml EGF. Increases in expression of PGHS-1 mRNA were small (7- to 10-fold) compared with PGHS-2 (30- to 120-fold), and the induction patterns were different for serum and EGF. An increase in PGHS-2 message was detected by 0.5 h of adding either agent, but peak induction occurred earlier for EGF than for serum, 1 h vs. 3 h, respectively. The response to either stimulus had returned to prestimulation levels by 12 h. The induction of PGHS-2 protein was also transient, but followed a more delayed time course (peak levels at 6 h). Induction of activity, message, and protein by either agent was blocked by 1 microM dexamethasone and attenuated by genistein (100 microM), a nonspecific tyrosine kinase inhibitor. Tyrphostin 47, a more selective EGF receptor tyrosine kinase inhibitor, dose-dependently inhibited EGF-stimulated PGHS activity, completely abolishing PG production at 100 microM. However, this inhibitor had no effect on serum-stimulated PG production. Curiously, 100 microM tyrphostin 47 enhanced EGF-induced PGHS-2 mRNA and protein expression. These data suggest that EGF induces the expression of PGHS-2 in cerebromicrovascular smooth muscle by a mechanism that requires tyrosine kinase activity and that is distinct from serum.  相似文献   

8.
We have examined epidermal growth factor (EGF) signalling in a CHO cell line (CHO11) which expresses a human EGF receptor truncated at amino acid 990. Previous studies showed that EGF treatment of these cells failed to increase prostaglandin production or phospholipase A2 activity. In the current study EGF increased the tyrosine phosphorylation of the intracellular signalling protein Shc in CHO11 cells but did not activate either of the downstream signalling enzymes raf or mitogen activated protein kinase (MAPK). The uncoupling of Shc activation from distal signalling in CHO11 cells contrasts with other cells which express similar mutant EGF receptors. The failure of She to activate distal signalling may reflect qualitative differences in the way that this protein is activated or could result from the activation of an inhibitory signalling pathway.  相似文献   

9.
The receptor (R) for epidermal growth factor (EGF) is expressed at high levels on human breast cancer cells and associates with ErbB2, ErbB3, and Src proto-oncogene family protein tyrosine kinases (PTKs) to form membrane-associated PTK complexes with pivotal signaling functions. Recombinant human EGF was conjugated to the soybean-derived PTK inhibitor genistein (Gen) to construct an EGF-R-directed cytotoxic agent with PTK inhibitory activity. The EGF-Gen conjugate was capable of binding to and entering EGF-R-positive MDA-MB-231 and BT-20 breast cancer cells (but not EGF-R-negative NALM-6 or HL-60 leukemia cells) via its EGF moiety, and it effectively competed with unconjugated EGF for target EGF-R molecules in ligand binding assays. EGF-Gen inhibited the EGF-R tyrosine kinase in breast cancer cells at nanomolar concentrations, whereas the IC50 for unconjugated Gen was >10 microM. Notably, EGF-Gen triggered a rapid apoptotic cell death in MDA-MB-231 as well as BT-20 breast cancer cells at nanomolar concentrations. The EGF-Gen-induced apoptosis was EGF-R-specific because cells treated with the control granulocyte-colony stimulating factor-Gen conjugate did not become apoptotic. Apoptosis was dependent both on the PTK inhibitory function of Gen and the targeting function of EGF, because cells treated with unconjugated Gen plus unconjugated EGF did not undergo apoptosis. The IC50s of EGF-Gen versus unconjugated Gen against MDA-MB-231 and BT-20 cells in clonogenic assays were 30 +/- 3 nM versus 120 +/- 18 microM (P < 0.001) and 30 +/- 10 nM versus 112 +/- 17 microM (P < 0.001), respectively. Thus, the EGF-Gen conjugate is a >100-fold more potent inhibitor of EGF-R tyrosine kinase activity in intact breast cancer cells than unconjugated Gen and a >100-fold more potent cytotoxic agent against EGF-R+ human breast cancer cells than unconjugated Gen. Taken together, these results indicate that the EGF-R-associated PTK complexes have vital antiapoptotic functions in human breast cancer cells and may therefore be used as therapeutic targets.  相似文献   

10.
BACKGROUND & AIMS: Long-term ethanol intake suppresses liver regeneration in vivo and ethanol interferes with epidermal growth factor (EGF)-induced DNA synthesis in vitro. Therefore, the effects of long-term ethanol treatment on EGF-activated signaling reactions in rat hepatocytes were investigated. METHODS: Hepatocytes from long-term ethanol-fed rats and pair-fed controls were stimulated with EGF (0.5-20 nmol/L) for 15-120 seconds. Tyrosine phosphorylation of EGF receptor (EGFR), Shc, and phospholipase-C gamma1 (PLC gamma), and growth factor receptor binding protein 2 (Grb2) coprecipitation with EGFR and Shc were analyzed by Western blotting. RESULTS: EGFR autophosphorylation was suppressed at all EGF concentrations in ethanol-fed cells compared with pair-fed cells, without significant differences in total EGFR protein or EGFR tyrosine kinase activity detected in cell lysates, suggesting that intracellular factors suppressed EGFR function. EGF-induced PLC gamma tyrosine phosphorylation and inositol 1,4,5-trisphosphate (InsP3) formation were suppressed, but cytosolic [Ca2+]c elevation was little affected, indicating enhanced InsP3-mediated intracellular Ca2+ release in ethanol-fed cells. Grb2 binding to EGFR was suppressed, but EGF-induced Shc tyrosine phosphorylation and Grb2 association with Shc were not significantly decreased. CONCLUSIONS: Long-term ethanol feeding suppressed EGF-induced receptor autophosphorylation in rat hepatocytes with differential inhibition of downstream signaling processes mediated by PLC gamma, Shc, and Grb2. Altered patterns of downstream signals emanating from EGFR may contribute to deficient liver regeneration in chronic alcoholism.  相似文献   

11.
To examine the role of tyrosine kinase (TK) on basolateral membrane (BLM) transport, we looked for the presence of TK activity in these membranes and showed that the synthetic substrate for TK, poly [Glu80 Na, Tyr20] caused a three-fold increase in tyrosine phosphorylation. This effect was completely blocked by the TK inhibitors, 2-hydroxy-5(2,5-dihydroxybenzyl) aminobenzoic acid (HAC), 1 microM, and methyl 2,5-dihydroxycinnamate (DHC), 5 microM. We then examined the effect of agents that cause TK stimulation on tyrosine kinase immunocontent and on the Na-HCO3 cotransporter activity in BLM and in primary cultures of the proximal tubule. We utilized the cholinergic agent, carbachol (10(-4) M), epidermal growth factor (EGF 10(-8) M), and insulin (10(-8) M), well known activators of TK. Carbachol, insulin, and EGF caused a significant increase in TK immunoreactive protein content which was blocked by HAC and DHC. In BLM, carbachol significantly stimulated HCO3-dependent 22Na uptake and this effect was totally prevented by the monoclonal antibody against TK. In cultured proximal tubule cells, carbachol, EGF and insulin at physiologic concentration caused a significant stimulation of the cotransporter activity and this effect was completely blocked by the TK inhibitor, HAC. Increasing the dose of insulin 100-fold did not cause further stimulation of the cotransporter indicating that insulin plays a permissive role on the cotransporter. These results demonstrate the presence of TK in renal proximal tubule cells and show that activation of this kinase by dissimilar agents enhance the activity of the Na-HCO3 cotransporter.  相似文献   

12.
PURPOSE: Trabecular meshwork and ciliary muscle express properties of smooth muscle cells. The contractility of trabecular meshwork and ciliary muscle is differently modulated by various agents. To reveal contractile regulatory processes, the effects of activation and inhibition of protein tyrosine kinases (PTKs) and their interaction with other protein kinases on contractility were measured. METHODS: Measurements of isometric tension were performed on isolated bovine trabecular meshwork and ciliary muscle strips using a custom-built, electromagnetic, force-length transducer. Protein tyrosine kinase (PTK) was stimulated by epidermal growth factor (EGF) and was inhibited by genistein or tyrphostin 51. Protein kinase C (PKC) was inhibited by chelerythrine or NPC-15437 and protein kinases A and G (PKA-PKG) by H8. RESULTS: Isolated strips were precontracted by applying carbachol 10(-6) M for 30 minutes (100% carbachol maximum contraction). Inhibition of PTK evoked a maximum relaxation of 79.2+/-4.2% in trabecular meshwork and of 38.1+/-3.1% in ciliary muscle (n=8). Inhibition of PKC or PKA-PKG induced relaxations only in trabecular meshwork. When PTK and PKC or PKA-PKG were inhibited, the relaxation induced by inhibition of PTK was additive to inhibition of the other protein kinases. Stimulation of a receptor with PTK activity by EGF induced a relaxation in trabecular meshwork and a contraction in ciliary muscle precontracted by carbachol. When trabecular meshwork and ciliary muscle were activated by EGF, inhibition of PTK by genistein relaxed the cell preparations. CONCLUSIONS: Inhibition of PTK induces more prominent relaxation in trabecular meshwork than in ciliary muscle. The effects of inhibition of PTK on relaxation are independent of inhibition of PKC and PKA-PKG. The signaling cascade after activation of a tyrosine kinase receptor by EGF is differently modulated in trabecular meshwork and ciliary muscle. The effect of genistein on relaxation is probably not directly related to the EGF receptor. PTK inhibitors are possible agents for the development of novel antiglaucoma drugs.  相似文献   

13.
14.
15.
The Ca(2+)-binding epidermal growth factor (cbEGF)-like module is a structural component of numerous diverse proteins and occurs almost exclusively within repeated motifs. Notch-1, a fundamental receptor for cell fate decisions, contains 36 extracellular EGF modules in tandem, of which 21 are potentially Ca(2+)-binding. We report the Ca(2+)-binding properties of EGF11-12 and EGF10-13 from human Notch-1 (hNEGF11-12 and hNEGF10-13), modules previously shown to support Ca(2+)-dependent interactions with the ligands Delta and Serrate. Ca2+ titrations in the presence of chromophoric chelators, 5,5'-Br2BAPTA and 5-NBAPTA, gave two binding constants for hNEGF11-12, Kd1 = 3.4 x 10(-5) M and Kd2 > 2.5 x 10(-4) M. The high-affinity site was found to be localized to hNEGF12. Titration of hNEGF10-13 gave three binding constants, Kd1 = 3.1 x 10(-6) M, Kd2 = 1.6 x 10(-4) M, and Kd3 > 2.5 x 10(-4) M, demonstrating that assembly of EGF modules in tandem can increase Ca2+ affinity. The highest affinity sites in hNEGF11-12 and hNEGF10-13 had 10 to 100-fold higher affinity than reported for EGF32-33 and EGF25-31, respectively, from fibrillin-1, a connective tissue protein with 43 cbEGF modules. A model of hNEGF11-12 based on fibrillin-1 EGF32-33 demonstrates electronegative potential that could contribute to the higher affinity of the Ca(2+)-binding site in hNEGF12. These data demonstrate that the Ca2+ affinity of cbEGF repeats can be highly variable among different classes of cbEGF containing proteins.  相似文献   

16.
Inflammation of the respiratory tract is associated with the production of reactive oxygen species, such as hydrogen peroxide (H2O2) and superoxide (O2-), which contribute extensively to lung injury in diseases of the respiratory tract. The mechanisms and target molecules of these oxidants are mainly unknown but may involve modifications of growth-factor receptors. We have shown that H2O2 induces epidermal growth factor (EGF)-receptor tyrosine phosphorylation in intact cells as well as in membranes of A549 lung epithelial cells. On the whole, total phosphorylation of the EGF receptor induced by H2O2 was lower than that induced by the ligand EGF. Phosphorylation was confined to tyrosine residues and was inhibited by addition of genistein, indicating that it was due to the activation of protein tyrosine kinase (PTK). Phosphoamino acid analysis revealed that although the ligand, EGF, enhanced the phosphorylation of serine, threonine, and tyrosine residues, H2O2 preferentially enhanced tyrosine phosphorylation of the EGF receptor. Serine and threonine phosphorylation did not occur, and the turnover rate of the EGF receptor was slower after H2O2 exposure. Selective H2O2-mediated phosphorylation of tyrosine residues on the EGF receptor was sufficient to activate phosphorylation of an SH2-group-bearing substrate, phospholipase C-gamma (PLC-gamma), but did not increase mitogen-activated protein (MAP) kinase activity. Moreover, H2O2 exposure decreased protein kinase C (PKC)-alpha activity by causing translocation of PKC-alpha from the membrane to the cytoplasm. These studies provide novel insights into the capacity of a reactive oxidant, such as H2O2, to modulate EGF-receptor function and its downstream signaling. The H2O2-induced increase in tyrosine phosphorylation of the EGF receptor, and the receptor's slower rate of turnover and altered downstream phosphorylation signals may represent a mechanism by which EGF-receptor signaling can be modulated during inflammatory processes, thereby affecting cell proliferation and thus having implications in wound repair or tumor formation.  相似文献   

17.
Polyclonal immunoglobulins were produced against the carboxy terminus, -SEFIGA, of the receptor for epidermal growth factor (EGF). The addition of these immunoglobulins to a solution containing EGF receptor resulted in the activation of its protein tyrosine kinase. The levels of activation were assessed by measuring the initial velocities of the phosphorylation of the tyrosine in angiotensin II. The enzymatic activity induced by the immunoglobulins was significant, usually 50-70% of the maximum activity induced by EGF, and the induction occurred over a narrow range of concentration of the immunoglobulins. In order to achieve the activation, the immunoglobulins had to be bivalent; the addition of monovalent Fab fragments to EGF receptor did not produce any activation of the protein tyrosine kinase. The activation produced by the immunoglobulins was found to be reversible upon the addition of the synthetic peptide SEFIGA against which the immunoglobulins had been produced. Self-phosphorylation of the EGF receptor also occurred as the enzyme was activated by the immunoglobulins. Tryptic peptide maps demonstrated that the self-phosphorylation caused by the immunoglobulins had the same signature as that produced by EGF. When the synthetic peptide that had been used as the hapten was added to EGF receptor that had been self-phosphorylated in the presence of the immunoglobulins, the stimulated enzymatic activity was lost even though the protein remained phosphorylated. It follows from the results of deletion mutation [Walton, G. M., Chen, W. S., Rosenfeld, M. G., & Gill, G. N. (1990) J. Biol. Chem. 265, 1750-1754] and the results reported here that self-phosphorylation is neither necessary nor sufficient for the activation of EGF receptor.  相似文献   

18.
The 9E3/CEF4 gene codes for a chemokine that is highly homologous to human interleukin-8 and melanoma growth-stimulating activity/groalpha. These chemokines belong to a family of molecular mediators that are importantly involved in inflammation, wound healing, tumor development, and viral entry into cells. On the chorioallantoic membrane the 9E3 protein is chemotactic for monocyte/macrophages and lymphocytes and is angiogenic. In cultured chicken embryo fibroblasts, which have many of the properties of wound fibroblasts, the gene is stimulated by a variety of agents including oncogenes, growth factors, phorbol esters, and thrombin. The strong stimulation of 9E3 by thrombin in culture correlates well with the observation that in young chicks this gene is stimulated to very high levels in fibroblasts upon wounding and remains high throughout wound repair. Activation of 9E3 by thrombin: (i) occurs very rapidly, one minute exposure to thrombin is sufficient to initiate the signals necessary for gene activation; (ii) is independent of mitogenesis; (iii) operates through the proteolytically activated receptor for thrombin; (iv) is mediated by tyrosine kinases, including c-src and the epidermal growth factor (EGF) receptor, rather than Ser/Thr kinases such as protein kinase C and protein kinase A. Inhibition of either c-src or the EGF receptor tyrosine kinase inhibits the stimulation of 9E3 by thrombin. We show here for the first time that activation of the EGF receptor through a cell-surface receptor that does not have tyrosine kinase activity can lead to expression of an immediate early response gene which encodes for a secreted protein, a chemokine. This rapidly activated tyrosine kinase pathway may be a general stress response by which in vivo a localized cell population reacts to emergency situations such as viral infection, wounding, or tumor growth.  相似文献   

19.
Glycosphingolipids expressed in cancer cells have been implicated in the modulation of tumor cell growth through their interaction with transmembrane signaling molecules such as growth factor receptors. For glycosphingolipids to interact with growth factor receptors, the presence of sialic acid seems to be essential. Stable transfection of a gene encoding a soluble Mr 42,000 sialidase into a human epidermoid carcinoma cell line (A431) provided an approach by which the level of terminal lipid-bound sialic acid on the cell surface could be altered. In the sialidase-positive clones, the level of ganglioside GM3 was diminished, and little change was observed in protein sialylation. Sialidase-transfected cells grew faster than control cells. Sialidase expression did not modify the binding of epidermal growth factor (EGF) to its receptor but enhanced EGF receptor (EGFR) tyrosine autophosphorylation as compared to that of parental cells or cells transfected with the vector (pcDNA3) alone. Moreover, the phosphorylation of the EGFR, as well as other protein substrates, was observed at low EGF concentrations, suggesting an increase in the receptor kinase sensitivity. These data provided evidence that changes in ganglioside expression in cancer cells by appropriate gene transfection can dramatically affect EGFR kinase activity. Hence, the modulation of ganglioside expression may represent an approach to alter tumor cell growth.  相似文献   

20.
Clotting factor XII (Hageman factor) contains epidermal growth factor (EGF)-homologous domains and is reported to be a potent mitogen for human hepatoma (HepG2) cells. In this study, we tested whether factor XII exhibits growth factor activity on several other EGF-sensitive target cells, including fetal hepatocytes, endothelial cells, alveolar type II cells, and aortic smooth muscle cells. We found that factor XII significantly enhanced [3H]thymidine incorporation in aortic smooth muscle cells (SMCs) and all other cells tested. Tyrphostin, a growth factor receptor/tyrosine kinase antagonist, inhibited both EGF- and factor XII-induced responses. However, differences in the levels of magnitude of DNA synthesis, the observed synergism between EGF and factor XII, and the differential sensitivity to tyrphostin suggest that the EGF receptor and the factor XII receptor may be nonidentical. The factor XII-induced mitogenic response was achieved at concentrations that were 1/10th the physiologic range for the circulating factor and was reduced by popcorn inhibitor, a specific factor XII protease inhibitor. Treatment of aortic SMCs with factor XII, as well as activated factor XII, resulted in a rapid and transient activation of a mitogen-activated/extracellular signal-regulated protein kinase with peak activity/tyrosine phosphorylation observed at 5 to 10 min of exposure. Taken together, these data (i) confirm that clotting factor XII functions as a mitogenic growth factor and (ii) demonstrate that factor XII activates a signal transduction pathway, which includes a mitogen-activated protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号