首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
本文通过对粗、细两种W粉进行球磨,研究不同球磨时间下W粉粒度、形貌及亚晶尺寸的变化,再制备成WC及合金,观察其对WC及合金性能的影响。试验结果表明:随着W粉球磨时间的延长,细W粉中的团粒和粗W粉的聚集体先破碎或分离,随后钨晶粒在球的冲击下发生变形,特别是粗大钨晶粒中形成许多位错、裂纹等缺陷,导致亚晶尺寸不断变小。球磨后钨晶粒中存在的位错和表面裂纹在碳化开始时可有效提高碳原子向W粉颗粒内部的扩散速率,但这种影响随碳化温度提高或碳化时间的延长而不断减弱。随着W粉球磨时间的延长,其合金的磁力值均呈增加,表明合金中WC的晶粒度不断减小,但晶粒度的变化幅度不大;球磨时间对合金其它性能没有明显影响。长时间球磨粗W粉中出现少量扁平的W粉颗粒,在其制备的WC粉中也能发现,这可能是粗晶合金的金相组织中长条状晶粒数量增加的原因。  相似文献   

2.
中颗粒钨粉高温碳化制取粗晶碳化钨粉的研制   总被引:3,自引:1,他引:2  
龙运兰  史顺亮  杨蓉 《硬质合金》2007,24(4):211-214,218
本文叙述采用中颗粒钨粉高温碳化制取粗晶WC粉的过程,探讨碳化和球磨破碎工艺对WC的性能影响,并对用中颗粒钨粉高温碳化制取的粗晶WC粉与传统工艺制取的粗晶WC粉生产的合金性能进行比较。  相似文献   

3.
《硬质合金》2016,(5):311-321
本文研究了粒度接近的5个批次原料WC粉及对应合金的特性。利用扫描电镜分析原料WC粉的整体特征及WC颗粒聚集体构成特征,用激光粒度分析仪分析了各批次原料WC粉的粒度分布,用定量金相软件分析了合金成品WC晶粒粒度分布。结果表明,粒度接近的各批次的原料WC粉颗粒粒度分布不尽相同。在相同的球磨时间下,WC粉末粒度分布相同的批次,合金WC晶粒粒度分布曲线不尽相同,原料WC粉末中单晶WC颗粒的粒度对合金WC晶粒粒度分布有直接影响。评价WC的质量应从Fsss粒度、粒度分布、电镜形貌和球磨实验合金的晶粒分布进行综合分析。  相似文献   

4.
Co掺杂对粗颗粒、特粗颗粒WC粉末粒度与微观形貌的影响   总被引:1,自引:0,他引:1  
以粗颗粒与特粗颗粒W粉为原料,研究了Co掺杂对粗颗粒与特粗颗粒WC粉末粒度与微观形貌的影响。结果表明,Co掺杂有利于WC粉末Fsss的提高与游离碳的降低,有利于得到单晶WC粉末。当Co掺杂量为w(Co)=0.035%时,WC粉末颗粒与晶粒形貌发生巨大变化,WC晶粒的结晶完整性明显改善,呈现明显的生长台阶与生长平面,但特粗颗粒WC粉末颗粒形貌的规则度较粗颗粒WC粉末的低。当碳化温度由1900℃提高到2000℃后,Co掺杂特粗WC颗粒表面出现大量WC纳米颗粒依附物。  相似文献   

5.
《硬质合金》2014,(4):217-223
以不同钨酸盐前驱体制备的黄钨(YTO)、紫钨(VTO)和细黄钨(AYTO)为原料,在五带控温管式炉中于560760℃氢还原约300 min获得纳米W粉,通过干磨搅拌配碳将纳米W粉和粉状碳黑粉末混合均匀,然后置于通氢钼丝炉中在1 180℃碳化获得纳米WC粉,并制备了W-30%Cu、WC-30%Cu(质量分数)复合材料烧结体,研究了原料粉末形貌对W、WC粉末的均匀性的影响。通过比表面测定仪和费氏粒度仪测定了粉体的比表面和粒度,用扫描电镜(SEM)观察了粉末的形貌和烧结体的显微组织结构。结果表明,不同形貌的原料制备的纳米W和WC粉末的均匀性不同,钨酸盐(B)制备的细黄钨(AYTO)相成分单一,颗粒细小,具有疏松、多孔形貌结构,以其为原料所获纳米W粉、WC粉末夹粗少,均匀性好,晶粒聚集少。  相似文献   

6.
WC/Co纳米复合粉质量特性的研究   总被引:4,自引:4,他引:0  
徐涛 《硬质合金》2011,28(4):219-227
本文探讨了喷雾转换法制备WC/Co纳米复合粉的生产工艺特点、粉末的物理化学特性以及在超细合金中的应用效果。各方面的实验数据表明:WC/Co复合粉中WC碳化完全、粒度细而均匀,钨钴元素达到分子级均匀混合,Co对WC形成纳米级包覆,粉末颗粒外形多呈球状,球体由部分合金化的WC/Co粒子聚合而成,粒子之间存在明显的烧结颈,其亚晶尺寸在100nm以下。复合粉经强化球磨后制取的超细合金较传统工艺制备的合金的WC相晶粒更加均匀,具有更好的物理力学性能和更高的使用寿命。即使不添加抑制剂,复合粉制备的合金仍具有晶粒细而均匀的特点。  相似文献   

7.
以偏钨酸铵、可溶钴盐、有机碳为原料,经喷雾转化、煅烧、低温还原碳化制备WC-Co复合粉。对前驱体、复合粉物相组成、WC晶粒度、微观形貌、平均粒度及分布进行研究。结果表明:复合粉由WC和Co两相组成,WC晶粒度约为60 nm;前驱体粉末呈空壳球形结构,部分颗粒破裂;经煅烧后,形貌未发生明显变化;再经还原碳化处理,颗粒表面产生大量孔隙,形貌与前驱体相似,具有很好的形貌结构遗传特性;复合粉平均粒度比前驱体略有减小且粒度分布更窄;溶液浓度、给料速度越大,离心转速越小,则平均粒度越大;进气温度对粒度影响很小。  相似文献   

8.
蓝钨物理性能对钨粉和碳化钨粉性能的影响   总被引:2,自引:0,他引:2  
彭卫珍 《硬质合金》2004,21(3):142-148
仲钨酸铵(APT)对蓝钨性能影响较大,而蓝钨物理性能对钨粉和碳化钨粉的性能影响也较大,通过对APT煅烧前或煅烧后进行特殊处理优选蓝钨原料,可以制取优质碳化钨粉。  相似文献   

9.
李维  赵秦生 《硬质合金》1997,14(4):204-206
研究了钨掺杂对Co-W粉末结构和形貌的影响,钨掺杂是在制备Co-W合金粉的前驱体的过程中实现的。用X-射线衍射分析粉末的相成分,通过扫描电镜观察粉末的微观结构。实验结果表明,Co中固溶的W阻止钴由面心立方结构向密排六方结构转变;W含量增加时,粉末中会析出Co3W相;W阻碍Co-W粉末间的烧结,W含量越大,Co-W粉的粒度就越小。  相似文献   

10.
本文在球料比为1.5∶1的情况下对40型和200型WC块进行球磨,研究了球磨时间对球磨后WC粉的化学成分、粒度及粒度分布、亚晶尺寸、形貌等的影响.然后,选取球磨1h和16 h的WC粉为原料,在相同的工艺条件下制备成合金,观察了合金形貌,检测了合金磁力、密度、硬度等性能.结果表明:随着球磨时间的延长,WC粉的粒度和总碳量降低,氧含量增加,粒度分布发生明显变化:随着球磨时间的延长,粒度分布曲线的峰值不断向左(即粒度细的方向)快速移动;随着球磨时间的延长,首先是粘结的WC颗粒分离,然后多晶WC颗粒沿晶界面破裂,最后不规则的粗大WC晶粒发生穿晶断裂并产生大量的微细粉末;随着球磨时间的延长,晶粒内部的亚晶尺寸不断变小.40型WC块经过长时间球磨后,其制备的合金的矫顽磁力和抗弯强度都减少,而其它性能没有明显变化.200型WC块经过长时间球磨后,其制备的合金的矫顽磁力减少,而其它性能也没有明显变化.200型WC块长的球磨时间容易造成合金中WC晶粒不均匀长大.  相似文献   

11.
在相同的工艺条件下,比较了蓝钨与紫钨氢还原法生产的钨粉的性能差别.结果表明:与蓝钨相比,紫钨生产的钨粉粒度更细更均匀,并且钨粉粒度受装舟量和氢气流量的影响较小.并从原料的微观结构和氢还原机理两方面分析了造成不同原料生产的钨粉粒度和均匀性差别的原因.  相似文献   

12.
Al2O3/WC powder was synthesized by means of aluminothermic reduction-carbonization with metallic Al powder, yellow tungsten oxide and carbon black or graphite as raw materials under the protection of coke granules.The effects of Al2O3 content, temperature, C/WO3 molar ratio, and atmosphere on the synthesis of Al2O3/WC powder were studied. The results show that the relative content of WC and W2C is strongly influenced by the factors mentioned-above. Carbon black has higher reactivity than graphite. Al2O3-WC composite is easier to obtain under the protection of coke granules than under argon atmosphere. The CO in the coke layer can easily react witht ungsten to form WC and to transfer from W2C to WC.  相似文献   

13.
Tungsten powder was fabricated from the system CaWOrMg by self-propagating high-temperature synthesis (SHS) with a magnesium thermit stage. The physic-chemical change during heating and the effects of pressure of sample and diluents (W powder) on product have been studied. The experimental results show that the porosity of combustion product and the particle size of final tungsten powder decrease with increasing pressure of sample. Addition of diluents could increase the particle size of final tungsten powder. The purity of tungsten is improved by leaching in NaOH solution. The results of spectral analysis and particle size distribution of final tungsten powder show that the final Tungsten powder has a median diameter of 0.87μm, specific surface area of 1.09m^2/g and purity of above 99.0%.  相似文献   

14.
研究了在传统氢还原工艺制备纳米碳化钨粉末过程中不同氧化钨的形貌结构对纳米W/WC粉末均匀性的影响,并对粉末及其WC-Co烧结体的性能进行了表征。结果表明,用具有疏松、多孔形貌结构的细小氧化钨颗粒更容易制备出结构较疏松、分散性较好的纳米W粉和WC粉。晶粒聚集和异常粗大颗粒的产生,主要与碳化过程中团聚纳米钨粉颗粒因烧结合并增粗有关。  相似文献   

15.
提出了一种以水热合成的PbWO4为原料,然后通过碳热还原-碳化获得超细WC的方法。以PbWO4为钨中间产品,避免了氨氮试剂的引入;采用碳还原的方式可避免水蒸气的产生,抑制了钨粉的长大。结果表明:在初始pH为7.0、反应温度为160 ℃,反应时间为4.5 h的条件下,Na2WO4溶液中99.9%(质量分数)以上的W以PbWO4的形式回收。然后采用低温碳还原PbWO4,在C:W摩尔比为5、950 ℃的条件下还原3 h,获得了W和C的混合物,该混合物中预加富余的C有助于抑制钨粉的团聚。然后将W和C混合物高温碳化,在1200 ℃下反应6 h,获得了粒径约为60 nm的WC粉末。  相似文献   

16.
The effect of vanadium on the synthesis of WC nanopowders by carbon thermal processing of V-doped tungsten precursor has been discussed. The V-doped tungsten precursor was prepared by a wet chemical method with ammonium tungstate and ammonium vanadate as its starting materials. The precursor was carbonized in the vacuum furnace using phenol formaldehyde resin as a carbon agent. The results of XRD revealed that the tungsten oxide and vanadium oxide obtained from the precursor preparation formed V–O–W bronze with the structure of WO3 · 0.33H2O. The carbonization reactions of WO3 with 1 wt% of vanadium took place in a temperature range from 900 to 1050 °C to obtain V-doped WC nanopowder. The results of particle size measurement and morphological analysis show that the vanadium effectively inhibits the particle growth of tungsten carbide powder during carbonization processes, resulting in the particle size to be within the range from 64 to 184 nm after heat treatment in the temperature range from 900 to 1200 °C. V2O3 particles decomposed from V–O–W bronze can act as a nucleation aid for tungsten during reduction, and those on the surface of tungsten powder can hinter the growth of tungsten carbide crystal by the pinning effect.  相似文献   

17.
蓝钨循环氧化还原对钨粉末粒度分布的影响   总被引:1,自引:1,他引:0  
傅小明 《硬质合金》2010,27(4):221-223,229
以特纯仲钨酸铵为原料,通过特纯仲钨酸铵在氩气中煅烧获得蓝钨,此蓝钨在纯度为99.99%、露点小于-40℃的氢气中进行还原,蓝钨还原的钨粉在空气中被氧化为三氧化钨,对此三氧化钨再在氢气中还原,然后利用扫描电子显微镜和激光粒度分析仪对试样进行分析,结果表明:经过循环一次氧化和两次还原,制备出了粒径分布在3~10μm之间占83.86%、比表面积为0.180m2/g的中颗粒钨粉。  相似文献   

18.
WC grain size has significant effect on WC-Co cemented carbide alloy properties. In order to inhibit WC grain growth during sintering process, grain growth-inhibitor Cr3C2 is usually added to tungsten carbide powder in advance through mechanical milling. While, homogeneous distribution of Cr3C2 in the tungsten carbide powder is difficult to achieve and result in abnormal growth of WC grains. For this purpose of growth-inhibitor uniform distribution, (CH3COO)3Cr is added into ammonium tungstate solution during evaporation and crystallization process to prepare Cr-doped APT powder, which can be used as precursor for ultrafine-grained WC-Co cemented carbide alloy preparation. Compared with conventional APT powder, the Cr-doped APT has smaller particle size and bulk density, moreover, chromium is evenly distributed within it. The Cr-doped APT is then used to produce Cr-doped tungsten powder, which also has smaller particle size than that of conventional tungsten powder. Cr-doped tungsten powder is subsequently prepared into tungsten carbide powder and WC-Co cemented carbide alloy through carbonization and sintering process, respectively. Compared with conventional WC-Co cemented carbide alloy, the obtained WC-Co cemented carbide alloy has smaller mean WC grain size (0.36 μm), and more uniform microstructure. Furthermore, the phenomenon of WC grain abnormal growth during sintering process is not observed, because the grain growth-inhibitor Cr3C2 is well dispersed in tungsten carbide and cobalt composite powder. Results show that the obtained WC-Co cemented carbide alloy presents better mechanical properties (HRA, bending strength, coercive force) than those of conventional WC-Co cemented carbide alloy. Accordingly, the novel addition of (CH3COO)3Cr during the evaporation and crystallization process is the key factor of ultrafine-grained WC-Co cemented carbide alloy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号