共查询到17条相似文献,搜索用时 109 毫秒
1.
光伏发电功率预测对提高光伏电站控制、调度性能以及保证电网的安全稳定运行具有重要意义。提出一种基于相似日和回声状态网络(ESN)的光伏发电功率预测模型。首先运用相关性分析法对光伏发电功率的影响因素进行了深入分析,并筛选出其主要影响因素;再利用主要影响因素的历史气象信息建立气象特征向量,通过计算灰色关联度(GRA)寻找合适的相似日;最后运用ESN创建预测模型,利用相似日历史数据训练ESN,而后对预测日的输出功率进行逐时预测。算例表明,对比传统模型,GRA-ESN模型具有更高的预测精度和更好的可行性。 相似文献
2.
光伏电站输出功率受多种外界环境因素影响显著,存在非线性、波动大等缺点。针对这一问题,提出改进的深度置信网络(Deep Belief Network,DBN)的方法。首先利用遗传算法(Genetic Algorithm,GA)为DBN神经网络选取最优的初始权值;其次利用灰色关联度法选择与预测日气象特征相似度高的日期,将这些日期的天气数据和历史发电功率作为训练样本训练DBN神经网络,建立短期光伏预测模型;最后通过仿真算例分析验证了该方法对传统DBN模型预测准确度的提升,且具有一定的可行性。 相似文献
3.
4.
5.
准确预测光伏发电功率有利于并网后电网调度管理,现阶段光伏发电功率预测存在精度较低和对不同天气类型的适应性弱的问题。探索了一种相似日与免疫遗传神经网络(IGA-BP)结合的预测方法:基于天气类型、温度及风速,结合灰色关联度和余弦相似度指标构建气象相似日判别模型;以相似日气象特征向量为输入,建立IGA-BP功率预测模型。利用实测数据对比分析所提IGA-BP模型与GA-BP、BP模型的预测精度,结果为:在不同天气类型下IGA-BP模型具有较高精度,其RMSE平均值为14.142%,TIC平均值为0.017 58,均优于其他对比模型。表明IGA-BP模型能够提高功率预测精度,且具有较高的适应性。 相似文献
6.
7.
8.
针对相似日对光伏功率预测精度的影响,提出基于相似日的Grey-Markov与BP_Adaboost的光伏功率预测方法。为获取不同相似日,分别以辐照度和温度为相似变量,通过二维欧氏距离选取两组相似日;基于两组相似日数据,用灰色GM(1,1)模型预测光伏功率的总体趋势,用马尔科夫链对灰色模型的预测结果进行修正,得到两组预测结果;用BP_Adaboost对两组预测结果进行集成,以获得更高的预测精度。仿真结果表明,该方法提高了结果的预测精度与鲁棒性,可为光伏电站并网提供重要参考信息。 相似文献
9.
10.
基于相似日和CAPSO-SNN的光伏发电功率预测 总被引:3,自引:0,他引:3
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。 相似文献
11.
地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型 总被引:2,自引:0,他引:2
光伏功率由于受到诸多局地随机突变因素的影响,其超短期预测面临很大挑战。云是引起地表辐射随机变化,进而引起光伏出力随机变化的最主要因素之一,在光伏功率预测建模中亟需将云这一因子进行量化和建模。首先,基于全天空云图,利用数字图像处理技术提取与辐射相关的图像特征;然后,将大气层外辐射、大气质量、图像亮度和云量作为输入因子,将地表辐射作为输出,建立径向基函数神经网络预测模型;最后,根据光电转换模型最终实现光伏功率超短期预测。实验结果表明:计及地基云图信息的光伏功率超短期预测模型,效果明显优于无图像信息的模型,为光伏电站超短期功率精确预测提供了重要的方法。 相似文献
12.
组合数值天气预报与地基云图的光伏超短期功率预测模型 总被引:3,自引:0,他引:3
为减轻光伏电站被云团遮挡导致发电功率突然衰减所造成的影响,提高光伏超短期的预测精度和预测有效时间长度,文中提出数值天气预报与地基云图相结合的光伏超短期功率预测模型。该模型首先基于临近晴空工况光伏超短期功率预测方法实现未来4h预测,接着使用数值天气预报云量信息和地基云图等方法预测未来4h内云团遮挡电站导致的功率衰减,并进行临近校正,以提高光伏超短期功率预测的精度。研究结果表明,文中所述模型具有很好的可行性和实用性,为光伏电站0~4h超短期功率精确预测提供了一种方法。 相似文献
13.
基于灰色神经网络组合模型的光伏短期出力预测 总被引:5,自引:0,他引:5
光伏发电系统输出功率具有不确定性特征,为了减轻其对电网的影响,有必要进行光伏出力预测。文中提出了一种基于灰色神经网络组合模型的方法对光伏出力进行预测。该方法是对传统直接预测和间接预测方法的结合,考虑了影响光伏出力的主要因素,通过统计与预测日相似天气条件下整点时刻的光伏出力,建立了各时刻出力的灰色模型,然后利用灰色模型的输出和温度数值与实测出力值建立神经网络预测模型,最终得到预测结果。文中采用实际光伏出力数据对灰色模型、神经网络模型、灰色神经网络组合模型3种预测方法进行了结果对比。算例结果表明,所提出的灰色神经网络组合预测模型能够更为精确地对光伏出力进行预测,因而具有潜在的应用价值。 相似文献
14.
为了提高光伏发电功率预测精度,根据不同天气类型下光伏输出功率特点,确定光伏发电功率预测模型的输入量。针对狼群算法(wolf pack algorithm,WPA)缺陷,对狼群游走位置和奔袭步长进行改进,得到改进狼群算法(improved wolf pack algorithm,IWPA),并通过IWPA对最小二乘支持向量机(least squares support vector machine,lSSVM)进行优化,建立了考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测模型。采用不同天气类型下的光伏发电功率数据进行仿真,结果表明:无论是晴天、多云还是阴雨天气,所提方法预测精度更高,回归拟合时的误差波动更小。 相似文献
15.
16.
光伏发电功率预测对于电力系统安全可靠运行以及提高光伏发电产业经济效益具有重要意义。提出一种基于时序动态回归的超短期光伏发电功率预测方法,仅需要历史光伏发电功率数据与数值天气预报作为输入。首先建立光伏发电功率与地表太阳辐射累计值的回归模型,再建立ARIMA模型预测回归残差序列,最后引入傅里叶谐波序列刻画日季节性。根据线性形式与对数形式的回归公式提出两种预测模型,综合二者形成最终的混合预测方法。算例结果表明,与一般时序模型相比,该方法在超短期预测方面预测精度更高。 相似文献