首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
一种优化系统动态性能的新型SSSC控制策略   总被引:1,自引:0,他引:1  
静止同步串联补偿器(SSSC)具有快速潮流控制的能力,选择好的控制策略能够充分发挥SSSC的作用。本文计及逆变器的损耗及直流侧电容电压的动态调节过程,在两相同步旋转dq坐标系下建立了SSSC的数学模型。在分析此模型的基础上提出了基于部分状态反馈的dq轴解耦策略,同时还提出了直流侧电容电压和线路有功功率的控制方法。在Matlab/Simulink动态仿真环境中搭建了SSSC的数学模型及控制系统的仿真模型,并基于该模型对直流侧电容电压调节过程、线路传输有功功率的调节过程和SSSC的暂态过程进行了仿真,仿真结果表明该控制策略的有效性和适用性。  相似文献   

2.
抑制电力系统功率振荡是静止同步串联补偿器的重要作用之一,考虑了静止同步串联补偿器(static synchronous seris compensator,SSSC)直流侧电容电压的动态调节过程以及各变量间的相互作用建立了SSSC的多变量仿射非线性模型,在此模型基础上,用精确反馈线性化方法设计了SSSC的非线性多输入多输出控制器。该控制器不仅能快速抑制系统功率振荡,还能使直流侧电容电压保持恒定。Matlab仿真结果验证了模型的有效性表明,所设计的控制器能有效地阻尼系统的功率振荡。  相似文献   

3.
静止同步串联补偿器(SSSC)是可实现阻尼系统功率振荡的重要交流输电装置。在研究了SSSC的基本拓扑结构和数学模型的基础上,分析了SSSC工作时产生具有可控幅值、相角的同步电压差与系统进行功率交换来实现补偿的动态调节过程。设计了一种含有灰狼优化(GWO)算法的功率振荡阻尼控制器,通过GWO算法实现了控制器主要参数的优化。搭建了接入额定容量100 MVA SSSC的电力系统仿真模型,模拟了分布式发电并网输出功率不稳定引发电网功率波动及三相接地短路故障等暂态工况,验证了本文引入的SSSC能起到良好的阻尼作用,提高电力系统的稳定性。  相似文献   

4.
SSSC非线性控制的直接反馈线性化方法   总被引:20,自引:8,他引:20  
考虑了静止同步串联补偿器(SSSC)的逆变器输出交流侧电压幅值和相位的动态调节过程及其直流侧电容电压的动态变化过程,建立了SSSC的的三阶动态模型,并用直接反馈线性化方法设计了SSSC与发电机励磁的协调非线性控制器,由于采用了动态反馈补偿,因而所设计的控制器对系统运行方式的变化具有很强的鲁棒性,该文还利用MATLAB的动态仿真环境Simulink及其S_Function编程技术建立了相应控制系统的仿真模型,并基于该模型对系统的暂态行为以及输电线路有功功率的调节过程进行了仿真,仿真结果表明,所设计的控制器能有效地对线路有功功率进行控制,并能显著地改善电力系统的暂态稳定性。  相似文献   

5.
为了提高静止同步串联补偿器(SSSC)的稳定性和灵活性,同时考虑到SSSC直流侧储能电容电压的动态调节过程以及各状态量之间的相互作用,建立了含不确定性干扰参数的SSSC五阶动态仿射非线性系统数学模型。在鲁棒H∞控制方法的基础上,利用SDM反馈线性H∞方法设计出了系统的非线性鲁棒控制器。针对设计过程中的Riccati方程,利用Matlab鲁棒控制工具箱,求解得到控制器的具体控制参数。利用Matlab进行系统的建模仿真,通过与传统的非线性最优控制系统的仿真效果对比,验证了该控制器在提高电力系统稳定性上的有效性和优越性。  相似文献   

6.
考虑到静止同步串联补偿器(static synchronous series compensator,SSSC)输出电压相位与线路电流相位的垂直关系、逆变器的损耗以及直流侧电容电压的波动过程,在两相同步旋转d-q坐标系下建立SSSC的恒阻抗模型。在分析此模型的基础上提出SSSC的双闭环控制策略,即电容电压控制和线路阻抗控制。在电容电压控制环中,选取SSSC为控制对象,电容电压为控制目标;在阻抗控制环中,选取含SSSC的输电线路为控制对象,线路阻抗为控制目标。在Matlab/Simulink动态仿真环境中搭建SSSC的恒阻抗模型及控制系统的仿真模型,并对线路阻抗的调节过程和电容电压的变化过程进行仿真,仿真结果证明了所建立模型和所提出控制策略的有效性和实用性。  相似文献   

7.
SSSC建模、控制策略及性能   总被引:13,自引:2,他引:13  
讨论了静止同步串联补偿器(SSSC)的电抗模拟特性,在两相同步旋转dq坐标系下建立了控制系统动态模型.分析了直流母线电压的暂态过程,控制系统采用了双闭环解耦控制.由于没有外部能量供应,SSSC从线路上吸取有功功率,通过串联变换器对直流母线电容进行自充电,SVPWM技术的应用提高了直流母线电压的利用率,改善了输出电压的质量,保证系统正常运行.仿真和实验结果表明,在SSSC中采用这种控制策略可以有效地调节线路阻抗,控制系统潮流,提高系统的稳定性.  相似文献   

8.
刘黎明  康勇  陈坚  朱鹏程 《电源学报》2006,4(2):113-119
本文重点讨论了静止同步串联补偿器(SSSC)的电抗模拟特性,在两相同步旋转dq坐标系下建立了控制系统动态模型。分析了直流母线电压的暂态过程,控制系统采用了双闭环解耦控制。由于没有外部能量供应,SSSC从线路上吸取有功功率,通过串联变换器对直流母线电容进行自充电,SVPWM技术的应用提高了直流母线电压的利用率,改善了输出电压的质量,保证系统正常运行。仿真和实验结果表明在SSSC中采用这种控制策略可以有效地调节线路阻抗,控制系统潮流,提高系统的稳定性。  相似文献   

9.
提出了一种基于神经网络自适应PI控制的SSSC潮流控制策略,并设计了控制器的结构。该控制器主要由系统辨识和PI参数整定两个神经网络组成,并给出了它们的学习算法。该控制器在动态过程中,利用神经网络对SSSC的有功控制器和无功控制器的PI参数进行在线调整,提高了控制器的自适应能力和鲁棒性。在Matlab动态仿真环境中建立了控制系统的仿真模型,并基于此模型对系统的暂态行为和输电线路潮流的调节过程进行了仿真,仿真结果验证了该控制器在潮流控制上的有效性和适应性。  相似文献   

10.
提出了一种新的静止同步串联补偿器(staticsynchronous series compensator,SSSC)的恒功率控制模型,并将此模型运用于电力系统潮流计算中。仿真计算了IEEE-14节点系统在安装SSSC前后的有功、无功损耗变化;在线路的P-Q约束条件下,推导了一种新的基于线路P-Q曲线的电压稳定计算公式,得出了相应的电压稳定指标,计算分析了SSSC安装前后对电压稳定的影响。通过仿真和计算分析可以得到,安装SSSC后能明显地改善系统的电压稳定。与其他方法相比,文中所提方法具有快速简洁的优点,进而具备一定的实际应用价值。  相似文献   

11.
静止同步串联补偿器变参数非线性暂态稳定控制器的设计   总被引:3,自引:0,他引:3  
静态同步串联补偿器(SSSC)对发电机暂态电动势、转子角速度等的直接影响为阻尼电力系统低频振荡提供了可能。文章在电力系统转子运动方程中计及了SSSC的作用,提出了SSSC的自适应变参数非线性控制方法。以SSSC 注入电压的相角和幅值调制系数为控制变量,在电力系统分析综合程序(PSASP)中利用用户自定义模型和程序接口(UD&UPI)建立了SSSC的暂态控制器,并利用EPRI-7 节点系统进行了暂态仿真,仿真结果验证了文中控制方法抑制低频振荡的有效性。  相似文献   

12.
传统风电经固定串补(FSC)外送系统常引发次同步振荡(SSO)问题,威胁系统的安全运行.基于风电串补系统SSO的发生机理,提出一种由静止同步串联补偿器(SSSC)与FSC组成的混合串联补偿(HSC)装置结构的附加控制策略.充分利用SSSC的控制灵活性,使其输出次同步电压与线路次同步电流同相位,SSSC等效为系统振荡频率...  相似文献   

13.
研究了电力系统低频振荡及其产生机理,并理论分析了静止同步串联补偿器(SSSC)对抑制电力系统低频振荡的作用。建立包含SSSC的单机无穷大系统的数学模型,推导该模型的非线性动态方程。利用在稳定运行点线性化的方法,以SSSC输出电压的相角和幅值调制系数为控制变量,设计了SSSC的暂态控制器,并将其用于提高系统阻尼,抑制电力系统低频振荡。在Matlab/Simulink中搭建包含SSSC的单机无穷大系统及暂态控制器的模型进行仿真验证,结果表明理论分析的正确性以及所提出的暂态控制策略的有效性。  相似文献   

14.
The static synchronous series compensator (SSSC) is one of the recently developed flexible AC transmission system (FACTS) controllers. The SSSC coupled with a transformer is connected in series with a transmission line. This paper describes a multicontrol functional model of the SSSC for power flow analysis, which can be used for steady state control of one of the following parameters: (1) the active power flow on the transmission line; (2) the reactive power flow on the transmission line; (3) the voltage at the bus; and (4) the impedance (precisely reactance) of the transmission line. Furthermore, the model can also take into account the voltage and current constraints of the SSSC. The detailed implementation of such a multicontrol functional model in Newton power flow algorithm is presented. A special consideration of the initialization of the variables of the SSSC in power flow analysis is also proposed. Numerical examples on the IEEE 30-bus system, IEEE 118-bus system, and IEEE 300-bus system are used to illustrate the feasibility of the SSSC model and performance of the Newton power flow algorithm.  相似文献   

15.
提出了一种适用于大规模电力系统暂态稳定性分析的静止同步串联补偿器(static synchronous series compensator,SSSC)机电暂态建模方法。该方法通过合理假设,根据SSSC的数学模型和机电暂态特性,在考虑SSSC直流电压动态过程的前提下建立了SSSC的机电暂态模型。首先,根据SSSC的对外特性建立SSSC的交流侧模型;其次,根据SSSC的自身约束,通过合理假设建立SSSC的直流侧模型;在此基础上,模块化设计了其控制器模型和调制环节模型。仿真结果表明,该模型能较好地呈现SSSC的动态特性,适用于SSSC接入大规模电网时分析其对电力系统暂态稳定性的影响。  相似文献   

16.
静止同步串联补偿器(SSSC)是FACTS家族中新兴的串联补偿元件,对其暂态特性的研究有助于使其更好地与继电保护装置及重合闸的协调配合。在介绍SSSC基本原理的基础上,根据加入SSSC后单机无穷大系统的动态方程,利用Matlab中的电力系统仿真库搭建了含SSSC的单机无穷大系统,并对其机电暂态特性进行了仿真。仿真结果表明系统发生故障后SSSC能有效地抑制功率振荡,并且SSSC不同的投入方式所产生的抑制效果不同。在此基础上还总结了区内区外故障时SSSC的投入运行方式,且线路区内故障时SSSC若以旁路运行方式投入则能达到最佳效果。  相似文献   

17.
通过对静态同步串联补偿器(static synchronous series compensator,SSSC)机理的分析,提出了应用正弦脉宽调制(sinusoidal pulse width modulation,SPWM)技术的SSSC控制器实现方案。控制回路设计中通过对正弦参考波相角偏移量的控制使直流电容电压保持恒定。SSSC稳态时的主要作用是对被补偿线路有功功率进行调控,控制器设计中综合考虑了调制系数与补偿方式(容性或感性)之间的相关性,实现了对线路有功功率的灵活控制,响应速度和波动都满足要求。利用PSCAD/EMTDC电磁暂态仿真工具搭建了包括EPRI-7节点系统、SSSC电压源逆变器及其触发控制回路,以及相应的测量、分析模块的详细电磁暂态仿真模型。仿真实现了SSSC的稳态及暂态功能,计算结果证明了控制回路的有效性和系统模型的正确性。同时对直流电容取值及耦合变压器电抗和变比对SSSC特性的影响进行了初步分析。  相似文献   

18.
依据电力电子变压器PET(Power Electronic Transfomer)的功率特性,提出了一种利用PET改善电力系统动态特性的新方法。PET副方接入输电线路。原方接无穷大系统,这时PET等效为一个可控电压源.建立发电机励磁和PET所构成电力系统的数学模型,分别以发电机功角、角速度、机端电压为状态变量,以发电机励磁电压、可控电压源的幅值和相角为控制变量。在此基础上推导了PET和发电机励磁的最优协调控制规律。仿真分析发现。通过PET与系统间功率的迅速交换和双向流动.提高了系统阻尼,有效抑制了扰动下的系统振荡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号