首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This paper provides an evaluation of the potential environmental impacts of electric system expansion in the Kingdom of Saudi Arabia. Environmental concerns are important to consider because they represent costs to society that are not typically reflected in the price that consumers pay for electricity. In past analyses of electric expansion options in Saudi Arabia, the tendency has been to stress the direct financial costs of expanding electricity generation, transmission, and distribution infrastructure without characterizing the environment impacts of building and operating the expanded electricity system in monetary terms. Emerging national and global environmental concerns, however, suggest that an expansion of the methods traditionally used for electricity resource planning and selection to include environmental considerations would greatly benefit the Kingdom. The criteria by which resource plans are evaluated can readily be broadened to address environmental and other concerns. As part of an illustrative Integrated Resource Planning (IRP) effort undertaken by a team of Saudi utility planners and international consultants, an expanded IRP framework was used to assess the environmental costs and benefits of various approaches to meeting electricity demand projections in Saudi Arabia. The results show that making use of renewable energy and energy efficiency resources to provide energy services to the electricity consumers of Saudi Arabia can provide significant environmental benefits for the Kingdom.  相似文献   

2.
This study presents the sustainable planning of a renewables-based energy system, which aims to fulfil the electric needs of the island by replacing the existing diesel generators with new wind farms, photovoltaic installations and hydrogen production systems. Electric system design and least cost planning analysis were concluded using historic data from both demand and supply sides. An optimal “sustainable island” scheme should ensure 100% use of renewable energy resources for power generation, while hydrogen production is ideal for covering storage and transportation needs. Due to its morphology and scale, Karpathos applies perfectly for wind and solar energy systems, due to increased solar resource (about 1790 kWh/m2.year of global irradiation) and high wind potential (average of 9 m/s in specific locations). Therefore, this case study examines an increase in RES penetration up to 20% in the electric energy mixture, a hydrogen production plan just for the needs of transport and a more aggressive, 100% renewables scheme that ensures a self-fulfilling energy system based on indigenous renewable resources.  相似文献   

3.
Environmental problems caused by traditional power production and the unbalanced distribution of energy resources and demand limit the development of sustainable societies. A feasible method to optimize the resource allocation has been proposed, and it involves cross-border and cross-regional electricity transactions. However, the uncertainty of renewable energy and the specific features of the cross-border electricity market are key issues which need to be considered in the trading mechanism design. Based on this, this paper sets up a long-term cross-border electricity trading model considering the uncertainty of renewable energy. First, annual transactions are matched according to the declared data of bidders with consideration of cross-border interconnection development benefits, potential benefit risks, and transmission costs. Second, for annual contract decomposition, the model uses the minimum generation cost function with a penalty item for power shortages to allocate electricity to each month. Additionally, the scenario reduction algorithm is combined with the unit commitment to construct a stochastic generation plan. Finally, a case study of the numerical results for the multinational electricity market in northeast Asia is used to show that the proposed trading model is feasible for cross-border electricity trading with high penetration of renewable energy.  相似文献   

4.
The absence of clean cooking facilities and electricity means billions of rural people are deprived of much needed socioeconomic development. Livestock residues (dung) and solar radiation are two renewable energy resources that are abundantly available in rural areas of developing countries. Although it is not feasible for these two resources separately to meet both thermal (cooking) and electricity demands, hybrid applications have not been given due attention. To facilitate integrating these two resources in rural energy planning, and to promote their dissemination through hybrid applications, it is necessary to evaluate their economic merits, and assess their ability to deal with the demands. In this paper, we examine the techno-economic performance of hybrid applications of these two resources by applying a simulation technique using the HOMER tool, and by giving derived cost-saving equations. We also quantify the monetary savings from replacing traditional fuels, and perform a sensitivity analysis on a number of variables (e.g. dung cost, fuelwood cost) to see how they affect the performance of different energy supply alternatives. Furthermore, we examine the practical applicability of the biogas system in the households through a structured survey of 72 ongoing household biogas plants. This study finds that households that have between three and six cattle can potentially meet their cooking and electricity loads through a hybrid implementation of biogas and solar PV (Photovoltaic) system. By replacing conventional fuels households can achieve savings that are more than the total annualized costs incurred for installing new services.  相似文献   

5.
Limited fossil resources and environmental problems require new sustainable energy supply options, that use renewable energies and are economic at the same time. Solar Thermal Electricity (STE) generating systems are proven renewable energy technologies and often a very cost effective way to produce electricity from solar radiation.In India, the electricity demand is drastically increasing. At the same time, solar resources and large wasteland areas are widely available. These factors together make India an ideal country for the implementation of STE-technologies.In this paper, we analyze the potential and the cost-effectiveness of centralized and decentralized STE-generation in India. Comparing the levelized electricity costs (LEC) for STE with the corresponding LEC for the electricity generating options used at present, we find that STE is an economically viable technology under favorable conditions, i.e. in areas with high insolation levels and provided that capital is available at low interest rates.  相似文献   

6.
In this study, an integrated community‐scale energy model (ICEM) was developed for supporting renewable energy management (REM) systems planning with the consideration of changing climatic conditions. Through quantitatively reflecting interactive relationships among various renewable energy resources under climate change, not only the impacts of climate change on each individual renewable energy but also the combined effects on power‐generation sector from renewable energy resources could be incorporated within a general modeling framework. Also, discrete probability levels associated with various climate change impacts on the REM system could be generated. Moreover, the ICEM could facilitate capacity–expansion planning for energy‐production facilities within a multi‐period and multi‐option context in order to reduce energy‐shortage risks under a number of climate change scenarios. The generated solutions can be used for examining various decision options that are associated with different probability levels when availabilities of renewable energy resources are affected by the changing climatic conditions. A series of probability levels of hydropower‐, wind‐ and solar‐energy availabilities can be integrated into the optimization process. The developed method has been applied to a case of long‐term REM planning for three communities. The generated solutions can provide desired energy resource/service allocation and capacity–expansion plans with a minimized system cost, a maximized system reliability and a maximized energy security. Tradeoffs between system costs, renewable energy availabilities and energy‐shortage risks can also be tackled with the consideration of climate change, which would have both positive and negative impacts on the system cost, energy supply and greenhouse‐gas emission. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Sources of renewable energies (for example landfill gas, wind, solar energy) are environmentally friendly and electric power generation in South Korea has concentrated on new and renewable energy technologies. The purpose of this paper is to study the economic and environmental influence of renewable energies on existing electricity generation market of South Korea with energy-economic model called ‘Long-range Energy Alternative Planning system’ and the associated ‘Technology and Environmental Database’. Business as usual scenario was based on energy supply planning with existing power plant. And then, the alternative scenarios were considered, namely the base case with existing electricity facilities, the installation plan of different renewable energy facilities, technological improvement and process dispatch rule according to merit order change. In each alternative scenario analysis, alternation trend of existing electricity generation facilities is analyzed and the cost of installed renewable energy plants and CO2 reduction potential was assessed quantitatively.  相似文献   

8.
Ian F. Roth  Lawrence L. Ambs 《Energy》2004,29(12-15):2125
This study presents a full cost approach to determine the levelized cost of energy (LCOE) of 14 electricity generation technologies. It encompasses costs incurred at all stages of the fuel cycle, including those that are traditionally omitted from economic evaluations of generation technologies. Incorporating these “externalities” increases the likelihood of developing the most economical and sustainable power resource from a societal perspective. The following externalities are included in this analysis: damage from air pollution, energy security, transmission and distribution costs, and other environmental impacts. Incorporating externalities has a large impact on the LCOE and the relative attractiveness of electricity generation options. Results indicate that clean and efficient generation technologies are the most attractive when all options are examined using a full cost, levelized approach.  相似文献   

9.
As states consider revising or developing renewable portfolio standards (RPS), they are evaluating policy costs, benefits, and other impacts. We present the first U. S. national-level assessment of state RPS program benefits and impacts, focusing on new renewable electricity resources used to meet RPS compliance obligations in 2013. In our central-case scenario, reductions in life-cycle greenhouse gas emissions from displaced fossil fuel-generated electricity resulted in $2.2 billion of global benefits. Health and environmental benefits from reductions in criteria air pollutants (sulfur dioxide, nitrogen oxides, and particulate matter 2.5) were even greater, estimated at $5.2 billion in the central case. Further benefits accrued in the form of reductions in water withdrawals and consumption for power generation. Finally, although best considered resource transfers rather than net societal benefits, new renewable electricity generation used for RPS compliance in 2013 also supported nearly 200,000 U. S.-based gross jobs and reduced wholesale electricity prices and natural gas prices, saving consumers a combined $1.3–$4.9 billion. In total, the estimated benefits and impacts well-exceed previous estimates of RPS compliance costs.  相似文献   

10.
In this study, the feed-in tariff (FIT) scheme was considered to facilitate an effective introduction of renewable energy in the Kingdom of Bahrain. An economic model was developed for the estimation of feasible FIT rates for photovoltaic (PV) electricity on a residential scale. The calculations of FIT rates were based mainly on the local solar radiation, the cost of a grid-connected PV system, the operation and maintenance cost, and the provided financial support. The net present value and internal rate of return methods were selected for model evaluation with the guide of simple payback period to determine the cost of energy and feasible FIT rates under several scenarios involving different capital rebate percentages, loan down payment percentages, and PV system costs. Moreover, to capitalise on the FIT benefits, its impact on the stakeholders beyond the households was investigated in terms of natural gas savings, emissions cutback, job creation, and PV-electricity contribution towards the energy demand growth. The study recommended the introduction of the FIT scheme in the Kingdom of Bahrain due to its considerable benefits through a setup where each household would purchase the PV system through a loan, with the government and the electricity customers sharing the FIT cost.  相似文献   

11.
《Energy》2001,26(4):431-439
This paper applies energy analysis and economic analysis in order to assess the application of solar photovoltaics (PVs) in buildings. Comparison is made both to electricity supply from centralised PV plants and to conventional electricity sources. The comparison with conventional sources reveals that there is currently a significant trade-off between the environmental and economic implications of PVs: there are substantial resource benefits to be gained from using PVs to supply electricity, but the economic cost of doing so is significantly higher than conventional sources. This trade-off is reduced when the benefits of building integrated PVs (BiPVs) are considered. By comparison with centralised PV plants, BiPV systems offer the “double dividend” of reduced economic costs and improved environmental performance. This double dividend is increased if the economic and energy costs of avoided cladding materials are taken into account.  相似文献   

12.
North African countries generally have strategic demands for energy transformation and sustainable development. Renewable energy development is important to achieve this goal. Considering three typical types of renewable energies— wind, photovoltaic (PV), and concentrating solar power (CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses. The levelized cost of electricity is used as an index for assessing economic feasibility. In this study, wind and PV, wind / PV / CSP, and transnational interconnection modes are designed for Morocco, Egypt, and Tunisia. The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country. The results show that renewable energy combined with power generation, including the CSP mode, can improve reliability of the power supply and reduce the power curtailment rate. The transnational interconnection mode can help realize mutual benefits of renewable energy power, while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility; thus, this mode is important for the future development of renewable energy in North Africa.  相似文献   

13.
Dramatic fall in costs of renewable energy in the last 24 months has not only accelerated the replacement of fossil fuels by renewable energy in electricity generation. The low cost renewable electricity is now starting to replace fossil fuels in other sectors.One reason is that renewable electricity is now cheaper per unit energy than oil, about the same price as fossil methan but, still, more expensive than coal. Another reason is that electricity often offer other opportunities, such as cheaper transport, better control, higher energy efficiency in final production of energy services and lower local environmental costs.  相似文献   

14.
The provision of both electrical and mechanical energy services can play a critical role in poverty alleviation for the almost two billion rural users who currently lack access to electricity. Distributed generation using diesel generators remains a common means of electricity provision for rural communities throughout the world. Due to rising fuel costs, the need to address poverty, and consequences of global warming, it is necessary to develop cost efficient means of reducing fossil fuel consumption in isolated diesel microgrids. Based on a case study in Nicaragua, a set of demand and supply side measures are ordered by their annualized costs in order to approximate an energy supply curve. The curve highlights significant opportunities for reducing the costs of delivering energy services while also transitioning to a carbon-free electrical system. In particular, the study demonstrates the significant cost savings resulting from the implementation of conventional metering, efficient residential lighting, and electricity generation using renewable energy sources.  相似文献   

15.
The utilisation of renewable energy resources for power generation is extremely important for Ireland due to the lack of indigenous fossil fuel resources. A micro-wind turbine is by far the most commonly used grid-connected micro-renewable electricity generation system for domestic applications in Ireland, followed by solar PV. Unfortunately, neither a single micro-wind turbine nor a single solar PV system can provide a continuous power supply due to variations in weather and climate conditions. The coupling of these two systems however can improve the power supply reliability by using the complementary characteristics of wind and solar energy. In this paper, a micro-renewable electricity-generation-system integration technique, tailored for applications in Ireland but generally applicable, is presented. Net present value is the parameter used to identify the optimal system. The optimal system can be a mono system, formed from a single micro-wind turbine or a single solar PV system, or a hybrid system formed from a combination of both. A renewable energy requirement is a constraint used in the integration to eliminate systems that cannot provide sufficient energy from renewable energy resources. The integration technique is applied to find the optimal system, under current Irish conditions, that can be formed from six sample micro-wind turbines and/or solar PV systems assembled from three sample solar PV modules. The analyses show that, with a 50% renewable energy requirement, the optimal system is a mono system containing a 2.4 kW micro-wind turbine; however, critically, the system is not economically viable. Four parameter studies assessing the effect of household electrical load, imported electricity price, exported electricity tariff and wind speed have also been conducted. From these studies it is seen that the most effective way to improve the financial performance of all systems is to offer a higher exported electricity tariff; installing a mono/hybrid system containing a micro-wind turbine in a location with a good wind resource can also have a significant effect.  相似文献   

16.
Renewable energy resources have historically played a small role for electricity generation in the US. However, concerns such as security of energy supply, limitations and price fluctuations of fossil fuels, and threats of climate changes have encouraged US policy makers to think and debate about diversification strategy in the energy supply and promotion of renewables. The current paper discusses the role of renewable portfolio in the US energy action plan during 2010–2030. A system dynamics model is constructed to evaluate different costs of renewable energy utilization by 2030. Results show that while renewables will create a market with near 10 billion $ worth (in the costs level) in 2030, the total value of renewable energy promotion and utilization in the US will be more than 170 billion $(in the costs level) during 2010–2030.  相似文献   

17.
The choice of which type of electrical power generation technology to adopt is driven by a number of factors including: cost of generated electricity; responsiveness of generating plant to demand; security of supply/resource availability; environmental impact; and execution risk. Within these, tidal energy is unique as a renewable technology since it has the capability of providing predictable, firm power contributing to security of supply. This predictability gives tidal energy additional value in a future electricity market. Especially one where stochastic renewable technologies contribute to a sizable component of the power supplied; and where reserve capacity is required to maintain supply during periods of non-availability. In the shorter term, in order for tidal energy to gain commercial acceptance, tidal technologies under development need to produce electricity at a competitive price. This paper examines the drivers influencing electricity pricing; current tidal energy developments, aimed at reducing capital costs; and bench-mark these against offshore wind.  相似文献   

18.
The industrial sector is one of the major energy consumers that contribute to global climate change. Demand response programs and on‐site renewable energy provide great opportunities for the industrial sector to both go green and lower production costs. In this paper, a 2‐stage stochastic flow shop scheduling problem is proposed to minimize the total electricity purchase cost. The energy demand of the designed manufacturing system is met by on‐site renewables, energy storage, as well as the supply from the power grid. The volatile price, such as day‐ahead and real‐time pricing, applies to the portion supplied by the power grid. The first stage of the formulated model determines optimal job schedules and minimizes day‐ahead purchase commitment cost that considers forecasted renewable generation. The volatility of the real‐time electricity price and the variability of renewable generation are considered in the second stage of the model to compensate for errors of the forecasted renewable supply; the model will also minimize the total cost of real‐time electricity supplied by the real‐time pricing market and maximize the total profit of renewable fed into the grid. Case study results show that cost savings because of on‐site renewables are significant. Seasonal cost saving differences are also observed. The cost saving in summer is higher than that in winter with solar and wind supply in the system. Although the battery system also contributes to the cost saving, its effect is not as significant as the renewables.  相似文献   

19.
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

20.
Power-to-gas (P2G) is a promising enabling technology for more cross-sector integration but its high cost has so far been a key barrier to implementation. Electricity supply is the greatest contributor to the levelised cost therefore it is important to understand which technologies and strategies can minimise the cost and accelerate the deployment. In this study, a method is devised to evaluate the cost and value of combined systems comprising P2G and renewable energy technologies such as solar photovoltaics, wind and hydro as well as comparing to traditional electricity supply via the wholesale market. The proposed models are based on a temporal resolution of 1 h and include partial operation and ageing throughout the system's lifespan. Our analysis covers both distributed and centralised P2G systems producing hydrogen or methane as well as various value-adding services across different geographies. It is found that the capacity factor of a P2G system drives the economic case and therefore the electricity supply from hydropower plants is economically more attractive than electricity from wind and solar photovoltaic plants in this order. Under today's market conditions, it is highly advisable to combine local renewable supply with wholesale-based supply but interestingly, a 20% capital cost reduction in wind technology or a P2G system efficiency of 80% are break-even points for P2G systems producing hydrogen and connected to wind plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号