首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了一种基于SU8介质材料的工作波段为20-30微米范围内的的多层超材料吸收器。该吸收器由金属颗粒周期阵列、介质间隔层和金属底层组成。利用LC模型和FDTD数值模拟方法,通过对SU8介质层厚度、金属颗粒阵列周期、金属颗粒尺寸等参数的优化,实现了对20-30微米波段范围内入射波的接近100%的完美吸收。并在上述研究基础上进一步设计了具有双层谐振腔的双模完美吸收器。通过数值模拟发现,由于SU8介质间隔层厚度的增加,上下两个谐振吸收器可以分别独立实现对特定波长的完美吸收。相应的特征共振吸收波长符合LC模型的预测。同时,数值模拟结果进一步证实了共振吸收频率与入射角度无关。该完美吸收机制可以归因于入射光在金属底层-SU8介质层-金属颗粒层所组成的谐振腔内多次反射吸收。  相似文献   

2.
姜祎祎  陈刚 《红外》2016,37(8):7-14
超材料吸收器的高吸收率源于表面金属颗粒与介质层之间产生的局域等离激元共振以及由金属颗粒--介质层--金属反射层构成的微腔所导致的共振吸收。其吸收特性与金属颗粒的尺寸、形貌和介质层的材料和厚度密切相关。设计优化了一个在近红外波段1.2 μm处具有近完美吸收的超材料吸收器。以该设计为蓝图,利用纳米压印技术制备了一系列具有不同介质层厚度的器件,并利用红外反射谱定量研究了这些器件的吸收特性。实验结果证实,用纳米压印技术制备的超材料器件具有工艺可靠性好、加工精度高等优点。实验测得的吸收率变化趋势与理论预期相符,吸收率较高。  相似文献   

3.
设计,数值模拟和讨论了一种具有两个宽带和扁平的吸收带的超材料吸收器,其中一个是腔共振吸收带,另一个是电共振吸收带.电共振的吸收带由于空腔尺寸(d)或者介质层厚度(H)的增加而蓝移,而腔共振吸收带则表现出红移的现象.同时,电共振和腔共振吸收带可以通过优化吸收器的结构设计耦合为一个吸收带.最后,数值模拟研究了入射角度的改变对电共振和腔共振吸收带的影响.利用不同波段的共振模式形成不同吸收带的方式提供了将双吸收带调制为单吸收带的可能性.  相似文献   

4.
设计, 数值模拟和讨论了一种具有两个宽带和扁平的吸收带的超材料吸收器, 其中一个是腔共振吸收带, 另一个是电共振吸收带.电共振的吸收带由于空腔尺寸(d)或者介质层厚度(H)的增加而蓝移, 而腔共振吸收带则表现出红移的现象.同时, 电共振和腔共振吸收带可以通过优化吸收器的结构设计耦合为一个吸收带.最后, 数值模拟研究了入射角度的改变对电共振和腔共振吸收带的影响.利用不同波段的共振模式形成不同吸收带的方式提供了将双吸收带调制为单吸收带的可能性.  相似文献   

5.
亚波长人工超构材料可以实现特定波长的近完美吸收,在红外光电器件应用中能够克服传统红外材料吸收效率低、厚度较大、工作波长受限于带隙等缺陷.本文利用金属/介质/金属结构构造了一种可大面积制备的亚波长结构,可以实现1-10μm波段内的双波段红外超吸收.通过时域有限差分法模拟和实验分析,我们认为该吸收器高频的吸收峰,主要来源F-P共振干涉增强吸收;而低频红外波段的吸收峰,主要得益于电偶极共振和磁共振模式的激发.利用退火工艺调节上层金颗粒的大小,可以有效地调节两个吸收峰的位置.  相似文献   

6.
增强可见-近红外光吸收在光电信号转换、探测、通信及传感等众多领域具有重要应用潜力。本文基于吉尔-图诺伊斯谐振腔(Gires-Tournois resonator)共振吸收原理,利用Al/Al_2O_3/Al三层膜结构制备了可见到近红外波段全铝基平面薄膜堆栈型超构吸收器。通过合适的参数优化选取,实现了吸收峰位连续可调。吸收峰值接近100%,变角度反射光谱显示器件对入射角度不敏感,理论数值模拟计算结果与实验结果相互吻合。完美吸收峰在500 nm附近的吸收器在532 nm激光照射下快速升温,最高温度可达55.4℃,表明该结构在光热转化领域的潜在应用。  相似文献   

7.
本文基于哑铃型光栅设计了基底/金膜/二氧化硅 /石墨烯/光栅五层结构近红外宽带吸收器。采用时 域有限差分法(FDTD)数值模拟了不同结构参数下吸收光谱带宽的变化规律,优化了结构设 计。结果证明,吸收器在近红外波段呈现完美吸收特性,且当二氧化硅层厚度为200 nm、哑铃型光栅函数取 0.2x2+0.07,厚 度为300 nm,周期在0.89 μm范围内,吸收谱带宽最大可达300 nm;同时在缓冲层 与光栅之间引入单层石墨烯可以明显增大吸收率。本结构吸收器在医药安全、宽带通信和隐 身技术等领域具有许多潜在的应用价值。  相似文献   

8.
基于不同材料和尺寸的三光栅级联顶层结构设计 了一种太阳能超宽带吸收器。采用时域有限差分法FDTD数值 模拟了铬膜厚度、缓冲层折射率和厚度、吸收器单元周期及三光栅宽度比和高度比等结构设 计参数对共振吸收光谱带宽 和吸收率的影响规律。同时借助选取波长下的电磁场分布规律、结合局域表面等离子体共振 探究了宽光谱、高吸收率产 生的物理机制。仿真结果表明,材料和结构参数不同的三个单光栅级联可明显拓宽入射光的 吸收光谱带宽;优化吸收器 结构设计参数后,获得了横跨部分紫外光、全部可见光和部分红外波段的宽频带,高达2.2 μm的吸收谱宽,近1μm红外频 段的吸收率可达完美吸收;并且吸收器在较宽的入射角范围内依然能保持良好的吸收性能和 极化的敏感特性。本文所设 计的吸收器结构简单,尺寸小,易与芯片集成,可在光伏发电、太阳能热处理和光探测等方 面均具有潜在的应用前景。  相似文献   

9.
近年来,由亚波长人工微结构单元组成的超构材料,因其具有自然材料所不具备的奇特物理性质,吸引了人们的广泛关注.其中最有趣的应用之一就是利用亚波长人工微结构增强对电磁波的吸收.设计并实现了一种人工超构材料柔性可弯曲的高性能太赫兹吸收器.为了实现最优的结构设计,分别对器件的结构周期、金属条宽度、介质层厚度和材料光学性质等关键结构及材料参数进行了系统优化.实验结果显示在频率3 THz附近器件峰值吸收率高达99%,与数值模拟结果相吻合.  相似文献   

10.
设计一种新的周期性超表面,基于介质层与吸收层的夹层式纳米柱结构表现出强烈的共振吸收效应,在可见光波段实现具有广色域、高饱和度、高分辨率优势的结构色。使用时域有限差分法(FDTD)模拟周期性纳米阵列在调节周期、介质层厚度时的光学响应,基于反射光谱建立从结构参数到显色特性的映射关系。结果表明,周期与介质层厚度的协同调节可生成更丰富的结构色,周期通过改变主波长显著影响结构色色相,介质层厚度优化光谱形状有助于实现高单色性颜色;该结构的光谱反射率高、半峰宽窄、主波长覆盖面广,色域扩大至156.8%的sRGB;经优化后实现的高质量RGB颜色,在±40°入射范围色相变化低于0.075π。该研究在显示成像、纳米印刷、高分辨打印等领域的应用具有重要价值。  相似文献   

11.
设计了一种多频带可调谐的太赫兹超材料吸收器。在超材料吸收器的结构中,引入光敏半导体硅材料,设计特殊的顶层金属谐振器,分析开口长度、线宽、介质层厚度等参数尺寸对太赫兹超材料吸收器的吸收光谱特性影响。根据光照与光敏半导体硅电导率之间的关系,研究太赫兹超材料吸收器的频率调谐特性。仿真结果得到太赫兹波段的12个吸收频率调制,其中有10处吸收峰的吸收率超过90%近完美吸收,且有6处吸收率达到99%的完美吸收,而且吸收率调制深度和相对带宽分别达到85.9 %和85.5%,具有很强的可调谐特性。设计的光激励太赫兹超材料吸收器结构简单,具有多频带可调谐和完美吸收特性,扩大了吸收器的应用范围。  相似文献   

12.
为了研究1维石墨烯光子晶体在可见光波段的吸收特性,采用传输矩阵的方法进行了理论分析和数值仿真,得到了1维石墨烯吸收特性与石墨烯层数、缺陷层介质厚度、电磁波模式有关的结果。结果表明,增加石墨烯层数时,对波长为556nm左右的绿光的吸收作用明显增强;缺陷层介质厚度增加时会引起吸收峰的增加;在TE模式下,入射角对石墨烯光子晶体吸收特性影响较小。该研究结果为1维石墨烯光子晶体吸收器的设计提供了理论依据。  相似文献   

13.
电磁超材料完美吸收器独特的亚波长结构能够与入射电磁波产生有效的电磁共振,在特定的频率范围内能够达到近乎100%的完美吸收。近年来,电磁超材料完美吸收器,特别是太赫兹波段完美吸收器受到了国内外研究人员的广泛关注,取得了一定进展。综述了基于太赫兹波段的电磁超材料完美吸收器的研究进展,阐述了超材料吸收器的基本结构特征、性能以及理论模型,并对太赫兹完美吸收器的未来发展趋势以及应用前景作了简要探讨。  相似文献   

14.
提出并研究了一种偏振选择可调谐双带太赫兹吸收器。吸收器由顶层方形劈裂石墨烯环、中间SiO2介质层以及底层金反射层组成。基于时域有限差分法的仿真结果显示,该吸收器在不同偏振光入射下均可以实现双带高效率吸收。x偏振光时在7.86和12.63THz处的吸收率分别为97.9%和91.2%;y偏振光时在6.30和10.52THz处的吸收率分别为94.1%和93.2%。通过改变石墨烯费米能级,可以对两个偏振的双带吸收峰波长进行调谐。此外,研究了介质层厚度和石墨烯劈裂环的物理参数对共振吸收峰的影响。因为在两个偏振状态下都能产生双带高吸收,所以此吸收器在太赫兹偏振成像、太赫兹传感、选择性光谱检测和偏振复用等领域有重要的潜在应用价值。  相似文献   

15.
范拓  张洁  陈俞霖 《压电与声光》2013,35(5):702-705
通过建立三维金属孔径模型,采用三维时域有限差分法(FDTD),对300~900 nm波段内不同特征参数下的亚波长周期性金属孔径膜的透过率情况进行了仿真分析;运用FDTD solution软件得到了金属膜孔径、周期、厚度及孔径填充介质等参数影响下亚波长周期性金属孔径膜的波长与透过率对应曲线.结果表明,亚波长周期性金属孔径的透射系数随着孔径的增大而增大;随着孔径阵列周期的变大而减小;在金属前、后介质匹配时透射最强,这为制作光学滤波器奠定了基础.  相似文献   

16.
以两个相耦合的非对称十字金属条带结构作为基元,设计了一种新型双频带太赫兹超材料吸收器。该吸收器由周期性排列的基元、金属接地板以及介质层组成。通过基元之间的耦合,可利用单一基元实现太赫兹波段的双频带吸收特性。仿真结果表明,设计的超材料吸收器在具有基频共振所形成的吸收峰外,还具有耦合共振所形成的耦合吸收峰。通过调节耦合强度、介质层厚度和金属条带的对称性,可以在保持磁共振模式的耦合共振峰频率基本稳定的同时,对基频共振峰频率进行调控,以满足不同的吸收要求。此外,该超材料吸收器也展现出对气体折射率变化的敏感性,灵敏度可达2.5 THz/RIU,使这种吸收器在气体传感方面具有巨大的潜力。  相似文献   

17.
基于阻抗匹配理论与组合谐振结构特性,设计了一种超宽带超材料太阳能吸收器。该吸收器由栅格结构与金属/介质/金属堆叠结构组合而成,组合结构有效拓展了吸收带宽。采用时域有限差分法分析了吸收器的吸收特性,结果表明:该吸收器在300~4000 nm波段内的平均吸收率可达94.9%,吸收带宽为3700 nm,可有效覆盖可见光与红外光波段。该吸收器在整个吸收波段范围内具有一定的偏振独立特性,以60°广角斜入射时,平均吸收率仍可达到93%。谐振频点处的电磁场分布表明,该吸收器的超宽带高吸收特性主要归因于表面等离子体共振、局域表面等离子体共振、慢波效应、法布里-珀罗共振,以及共振模式间的杂化耦合作用。所提超宽带高吸收太阳能吸收器在许多超材料领域具有潜在的应用价值。  相似文献   

18.
基于材料和尺寸不同的三光栅级联结构设计了一种 通信波段电磁超材料吸收器。利用时域有限 差分法(FDTD)数值分析了结构设计参数对吸收光谱的影响规律,获得了最佳结构。同时探 究了吸收 光谱对光源特性的依赖性。仿真结果证明,基于表面等离子共振和FP腔共振耦合形成的吸收 光谱主要集 中在0.66 μm通信波段,吸收率均达94%以上。吸收谱带宽随介质层厚度增大明显展宽;而三光栅 宽度比和高度比对吸收带宽几乎无影响,但对吸收率影响较大。因FP腔模和SPR模两种共振 机制在同一 单元周期下,共振波长沿相反方向漂移,近乎彼此抵消,导致吸收光谱带宽对周期不敏感; 同时具有吸收光谱特性不受光源入射角限制的优势。  相似文献   

19.
为了提高长波红外量子阱探测器的光耦合效率和信噪比,以8.7μm为中心波长,设计和制备了量子阱亚波长微柱阵列结构。与已经报道的金属或介质微腔结构不同,本文的微柱结构有源区包含50周期的量子阱/垒层,结合低至0.18的占空比,可望在增强吸收的同时显著抑制暗电流。红外光谱测量验证了制备的微柱阵列在8~9μm波段8%以内的低反射率特征,从而为高工作温度、高信噪比的长波红外探测提供了新方案。  相似文献   

20.
本文设计了一种石墨烯/交替光栅/铝(Al)底板结构红外波段电磁超材料多波长吸收器.利用时域有限差分法(FDTD)数值模拟了石墨烯层厚度和光栅结构参数对吸收光谱的影响规律.研究结果证明,基于FP腔共振和相消干涉形成的吸收光谱对石墨烯层厚度和光栅高度较敏感,即随着石墨烯层厚度增大或光栅高度降低,左边频迅速蓝移,伴随各干涉峰...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号