首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用湿法技术从废旧锂离子电池中回收有价金属   总被引:2,自引:0,他引:2  
赵东江  马松艳 《化学工程师》2011,25(2):52-54,64
采取湿法回收技术对废旧锂离子电池进行处理,研究了回收铝、钴、锂金属元素的工艺条件.在90℃时,用10%NaOH浸出铝,其浸出率达到96%.在温度90℃、4mol·L-1H2SO4、固-液比1:8、反应时间100min的浸出条件下,钴、锂浸出率为92%.利用NaHCO3和Na2CO3,为沉淀剂,从酸浸出液分别制备得到Co...  相似文献   

2.
随着近年来新能源汽车行业的飞速发展,锂离子电池退役报废量也日益增加,其回收处理技术受到越来越多的研究者关注。本文回顾总结了近些年来废旧锂离子电池的回收工艺方法,包括湿法工艺、火法工艺、联合工艺以及修复再生工艺等,其中火法-湿法相结合的联合工艺简单、高效,具有良好的产业化前景。  相似文献   

3.
介绍了废旧锂离子电池回收处理的意义和必要性,对溶剂萃取法、化学沉淀法、电沉积法、络合离子交换法等提取和分离正极中钴、铝、镍、锂等有价金属的研究现状进行了评述。  相似文献   

4.
锂离子电池报废量爆发式增长,预计到2023年,废旧锂离子电池回收利用将是一个超过300亿元产值的新兴市场,其中,锂资源占可回收金属价值的一半。为探索锂资源高效回收技术,基于现阶段研究热点,讨论了以废旧锰酸锂电池正极材料、废旧三元锂电池正极材料、废旧锰系锂离子电池负极材料为原料制备锂离子筛的方法;探讨了废旧锂离子电池中各类杂质成分对锂离子筛性能的影响;阐述了锰系锂离子筛技术在废旧锂离子电池的锂回收、盐湖卤水提锂和化工制药废水提锂等领域的应用。通过分析得出,锂离子筛的应用能够增加锂盐回收率与回收纯度,降低技术成本,应用前景广阔。  相似文献   

5.
相较于其他类型的电池,锂离子电池明显具备突出的优越性,但随意废弃会产生生态环境污染的问题,可以通过回收利用予以解决。在废旧锂离子电池回收利用过程中,有价金属的回收早已成为相关科学研究的热点,同时相关技术已初步取得进展。明确废旧锂离子电池的危害,以及有价金属回收技术的发展状况,针对其中不足进行优化和调整,可实现更有效的回收利用。清晰透彻地认识和把握废旧锂离子电池有价金属的回收技术,科学地针对相关回收技术当前的问题进行有效应对和解决,逐渐成为废旧锂离子电池有价金属回收利用工作应当解决的核心命题之一。  相似文献   

6.
《应用化工》2022,(6):1366-1369
采用SO_2还原浸出工艺回收废旧锂离子电池正极材料中的有价金属。结果表明,最佳工艺条件为:原料液固比为50∶1(m L/g),SO_2气体流速为0. 4 L/min,双氧水添加量为0. 1 g/g原料,反应温度为80℃,反应时间为60 min,此时Li、Ni、Co、Mn浸出率分别为98. 10%,98. 04%,97. 81%,98. 05%。浸出液经氧化、沉淀、过滤、静置等除杂过程后,得到的镍钴锰回收产品符合锂离子电池正极材料制备的要求。  相似文献   

7.
邹海凤  程琥  王雪  陈卓  胡长刚 《应用化工》2019,(6):1366-1369
采用SO_2还原浸出工艺回收废旧锂离子电池正极材料中的有价金属。结果表明,最佳工艺条件为:原料液固比为50∶1(m L/g),SO_2气体流速为0. 4 L/min,双氧水添加量为0. 1 g/g原料,反应温度为80℃,反应时间为60 min,此时Li、Ni、Co、Mn浸出率分别为98. 10%,98. 04%,97. 81%,98. 05%。浸出液经氧化、沉淀、过滤、静置等除杂过程后,得到的镍钴锰回收产品符合锂离子电池正极材料制备的要求。  相似文献   

8.
锂离子电池被广泛应用于电子产品、电动汽车和大规模储能材料等多个领域。随着电动车市场的快速发展,其使用量还将显著增加,随之产生数量极大的退役锂离子电池。退役锂离子电池的回收利用可以避免环境污染和资源浪费,尤其对实现锂资源供需平衡具有重要意义。综述了退役锂离子电池中有价金属元素回收技术研究现状,探讨了该领域未来发展方向。电池安全高效拆解技术与装备、有价元素整体化回收技术、电极材料再制备工艺以及避免二次污染环境是未来退役锂离子电池循环利用领域值得关注的重点。  相似文献   

9.
对硫酸-过氧化氢体系浸取废旧锂离子电池废料回收钴工艺进行了研究,以钴浸出率为评价指标,探讨了硫酸质量浓度、液固比、浸出时间和浸出温度对钴回收的影响。利用Box-Behnken响应面技术对钴浸出参数进行了优化分析。结果表明:在硫酸浓度为2.5 mol/L,H_2SO_4∶H_2O_2为6∶1,固液比为1∶20,浸出温度70℃,浸出时间1.0 h条件下,钴浸出率最高(97.58%)。验证试验,钴浸出率平均值为97.58%,与模型理论预测值97.09%接近。  相似文献   

10.
从硫酸铵焙烧废旧锂离子电池产物中浸出有价金属   总被引:2,自引:0,他引:2  
研究了废旧锂离子电池经(NH4)2SO4焙烧处理后有价金属的浸出行为. 考察了焙烧温度、(NH4)2SO4用量和浸出pH值对焙烧产物中金属元素浸出率的影响,比较了焙烧产物分别在稀硫酸溶液和含氨水与(NH4)2SO4的氨性溶液中的浸出效果. 结果表明,焙烧产物中的Li可被完全浸出,焙烧产物中Cu用氨性溶液浸出时浸出率达97.60%,在稀硫酸溶液中为92.86%,焙烧产物中部分钴以Co3O4的形态存在,浸出率低于68%,当用浓硫酸与水体积比为1:2的硫酸水溶液处理浸出渣时,Co的总浸出率可达99%以上.  相似文献   

11.
曹强 《山东化工》2021,(12):264-266
锂离子电池具有循环寿命长、无记忆效应、能量密度高等优点,其被广泛用于复杂电子设备供电.废旧锂离子电池中含有大量化学物质,其中金属类物质的回收和再利用对于保护生态环境和不可再生资源尤为重要.就锂离子电池中金属类物质的回收和再利用的研究现状进行概述,以期为从事锂离子电池中金属类物质的回收和再利用研究工作者及相关企业战略决策...  相似文献   

12.
废旧锂离子电池回收制备钴酸锂的研究进展   总被引:1,自引:0,他引:1  
介绍了废旧锂离子电池进行回收与资源化的意义、现状和研究进展,回顾了煅烧法、直接分离法、湿法冶金等回收工艺。系统地介绍了废旧锂离子电池回收制备可被再利用的锂钴氧正极材料技术,比较了各种方法在制备过程中的优缺点,并提出了废旧锂离子电池回收与资源化再生工艺存在的问题与发展方向。  相似文献   

13.
随着新能源行业的飞速发展,锂离子电池的使用量迎来了爆发式增长。由于锂电池使用寿命一般在3~5年,因此对废旧锂离子电池进行回收处理势在必行。本文总结了近几年废旧锂离子电池回收处理的研究进展。  相似文献   

14.
随着锂离子电池(LIBs)市场的快速增长,探索回收退役LIBs的有效策略已成为迫在眉睫的问题。未来,资源化回收将受到广泛关注。资源化回收既可以解决有价金属锂、镍、钴、锰资源短缺的问题,又可抑制废旧电池堆积而引起的危害,但运输、存储以及金属富集过程中的安全性问题仍得不到保障。针对退役电池回收工艺研究进展进行综述,重点对整个回收过程,包括运输存储、预处理、金属富集等步骤进行了全过程安全风险分析。通过对退役电池回收过程中的安全风险进行全面分析和梳理,旨在为国内外企业后续的电池回收方案提供参考。  相似文献   

15.
废旧锂离子电池中含有大量的金属钴与锂,具有较高的回收利用价值。文章以废旧锂离子电池中的正极材料为原料,考察了正极材料中的钴和锂在氨基磺酸和过氧化氢混合体系中浸出的实验。运用单因素实验,研究了氨基磺酸浓度、过氧化氢质量分数以及固液比等条件对Co2+、Li+浸出效果的影响。实验结果表明,反应产物中有氨基磺酸钴生成,当氨基磺酸浓度为0.75 mol/L、过氧化氢质量分数为5 vol.%、温度为60℃、固液比为5 g/L、时间为2 h时,钴和锂的浸出率均超过98%。  相似文献   

16.
随着锂离子电池(LIBs)大规模退役,废旧电池对环境的二次危害已成为一个亟待解决的问题,且其中的有价金属回收受到了广泛关注和研究。针对LIBs回收工艺的最新进展进行了综述,分析总结了火法冶金、湿法冶金等回收工艺存在的问题。重点对机械化学法(MC)回收正极材料中有价金属的现状进行全面分析和梳理,包括机械化学技术回收磷酸铁锂(LFP)、钴酸锂(LCO)、镍钴锰三元锂(NCM)、锂锰氧化物(LMO)等正极材料方面的研究,为LIBs回收工艺进展提供了参考。  相似文献   

17.
近年来,随着三元体系锂离子电池市场份额的快速增加,退役三元锂离子电池将在未来出现爆发式增长,因此,回收三元锂离子电池电极材料中高价值的钴、镍、锂等有价金属成为电池行业的又一研究热点。本文详述了湿法回收三元电池电极材料有价金属的工艺流程和主要方法,重点介绍了有价金属的浸取方法、金属的分离提取、再合成利用和浸取动力学机理的研究进展,比较了工艺流程中不同处理方法的优缺点。并对回收退役三元电池材料的有价金属作了经济性分析,结果表明,三元电池材料有价金属回收具有可观的经济效益。最后对湿法回收三元电池材料中的有价金属方法进行总结,并简述了未来湿法回收处理方法的重要技术,包括化学纯化、自动化拆解以及完善的分类回收技术等,为未来三元电池材料回收技术发展提供参考。  相似文献   

18.
张英杰  宁培超  杨轩  董鹏  林艳  孟奇 《化工进展》2020,39(7):2828-2840
随着锂离子电池产业的发展,退役三元锂离子电池带来的环境污染和资源浪费问题日益严重。数量庞大的废旧三元锂电池材料蕴含丰富的锂、镍、钴等有价元素,潜在资源量巨大,回收经济价值高,系统地开展废旧三元锂电池材料的回收及再生技术,将有助于防治废旧电池污染、缓解镍钴锂资源短缺压力,促进我国锂电池产业的良性发展。本文介绍了废旧三元锂离子电池中正极、负极材料、电解液回收的研究现状,主要包括正极材料的预处理、酸浸、碱浸出与材料再生、石墨和铜箔回收、电解液回收,着重介绍现阶段材料的制备方法和工艺,简要比较了各种工艺路线的优缺点,探讨了当前废旧三元锂离子电池回收存在的关键共性问题,并提出绿色环保、短流程、低成本、自动化的废旧三元锂离子电池回收利用发展思路。  相似文献   

19.
介绍了锂离子电池的主要结构,废旧锂离子电池国内外回收利用处置现状和主要方式,通过分析废旧锂离子电池处置过程对环境的影响,说明我国废旧锂离子电池处理处置中存在的不足,提出了加强废旧锂离子电池处理处置污染防治、提高综合利用的建议。  相似文献   

20.
采用盐酸溶液从废旧锂离子电池正极还原浸取钴   总被引:1,自引:0,他引:1  
采用盐酸和双氧水体系为浸取液对废旧锂离子电池正极进行还原处理。正交实验表明,影响Co2+浸出率几种因素强度顺序为:HC l浓度>固液比>H2O2-HCl体积比>反应温度>反应时间。最佳浸取条件为:HCl浓度为3 mol/L,H2O2-HCl体积比为1∶15,反应时间90 min,反应温度80℃,固-液比(g/mL)为1∶50。此时,Co2+浸出率达到99.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号