首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
范剑明 《无机盐工业》2019,51(11):65-68
分级研究了热活化条件下高铝煤矸石在盐酸和氢氧化钠溶液中的铝硅溶出行为。采用X射线衍射仪(XRD)、扫描电镜(SEM)和比表面积测定仪(BET)对煤矸石试样做了表征分析。通过正交实验分析了反应温度、反应时间、初始酸碱浓度和固液比对热活化处理后高铝煤矸石中Al2O3和酸浸渣SiO2溶出率的影响。结果表明:酸浸溶出Al2O3反应过程中,固液质量比和酸浸时间对溶出率的影响最为显著,酸浸过程的最优工艺条件:初始盐酸质量分数为20%、酸浸温度为90 ℃、酸浸时间为2.5 h、固液质量比为1∶6,在此条件下,Al2O3的浸取率达82.95%;强碱溶解酸浸渣溶出SiO2反应过程最优工艺条件:碱溶温度为95 ℃、碱溶时间为2.0 h、NaOH质量分数为20%、固液质量比为1∶10,在此条件下SiO2溶出率为69.74%,碱溶温度和碱液浓度对溶出率的影响最为显著。  相似文献   

2.
为提升循环流化床粉煤灰的利用价值,研究了温度、碱浓度、时间、液固比对粉煤灰中硅、铝溶出率的影响,分析了溶出液中硅、铝的聚合行为。结果表明:温度、碱浓度、时间、液固比对煤灰中活性硅、铝的溶出影响显著;当碱浓度为9 mol/L、反应温度90℃、反应时间4 min、液固比为20时,硅的溶出率最大,达70%;当碱浓度为6 mol/L、反应温度75℃、反应时间16 min、液固比为20时,铝的溶出率最大,达82%;当溶出温度为90℃、溶出液中硅浓度0.05 mol/L、铝浓度0.07 mol/L时,硅、铝会相互聚合。聚合时,硅、铝首先形成硅铝酸盐胶体,随后聚集为硅铝酸盐溶胶,最后联结形成硅铝酸盐凝胶。  相似文献   

3.
采用化学分析和XRF、XRD、激光粒度仪、SEM、FT-IR分析技术,研究了高铝粉煤灰预脱硅及浓碱液提铝过程中的固相变化规律.结果表明,高铝粉煤灰经预脱硅及NaOH浓碱溶液溶出后,碱灰质量比大于6时,Al2O3的溶出率大于85%,尾灰中铝硅质量比降至0.21,铝硅选择性分离.预脱硅过程中莫来石相和刚玉相未被破坏,而所含无定型铝硅酸盐溶解形成羟基方钠石Na8Al6Si6O24(OH)2(H2O)2,并附着于颗粒表面导致中值粒径略有增加;浓碱溶液提铝过程中,莫来石及刚玉相完全溶解,形成规则柱状或杆状的NaCaHSiO4及类沸石1.2Na2O’0.8CaO’Al2O3’2SiO2’H2O,中值粒径减小.  相似文献   

4.
设计了采用碱溶法对燃煤电厂粉煤灰进行提硅的综合实验.通过单因素试验方法考察碱溶温度、液固比、NaOH浓度、碱溶时间等因素对SiO2溶出率的影响.结果表明,本实验所用粉煤灰碱溶提硅的最佳反应条件为碱溶温度150℃,液固比2,NaOH溶液浓度20wt.%,碱溶时间3h,在此条件下SiO2溶出率为60.76wt.%.本实验充...  相似文献   

5.
NaOH亚熔盐法处理拜尔法赤泥的铝硅行为   总被引:5,自引:0,他引:5  
针对拜尔法赤泥铝/硅比偏高的问题,对NaOH亚熔盐法处理拜耳法赤泥过程中的Al, Si行为进行了研究. 考察了溶出温度、碱/泥比、添加CaO等主要因素对终赤泥化学成分和物相结构的影响. 结果表明,溶出温度高、碱/泥比大有利于Al2O3的回收,相应的终赤泥的铝/硅比较低. 在碱/泥比6、溶出温度230℃、时间2 h的条件下,氧化铝回收率可达79.22%,终赤泥的铝/硅比可降到0.39,终赤泥中的硅主要以NaCaHSiO4和Ca3(Fe0.87Al0.13)2(SiO4)1.65(OH)5.4形式存在. 在处理CaO/SiO2>1.2的拜尔法赤泥时继续添加CaO并不能继续提高Al2O3的回收率.  相似文献   

6.
高铝粉煤灰铝硅化合物在稀碱溶液中的浸出行为   总被引:1,自引:0,他引:1  
研究了循环流化床锅炉高铝粉煤灰中铝和硅在NaOH稀溶液中的浸出行为,在对高铝粉煤灰的组成、物相等物化性质研究的基础上,考察了碱浓度、反应温度和反应时间等工艺参数对粉煤灰中铝硅反应性能的影响. 结果表明,粉煤灰为大小不一的不规则颗粒,疏松多孔,具有较高的反应活性;在温和条件下,碱溶液中铝硅溶出规律存在较大差异,在95℃、碱浓度为150 g/L、反应90 min时二者差异最大,SiO2溶出率可达23.15%,而Al2O3的溶出率仅为1.68%,粉煤灰的铝硅比可由0.78提高到0.99.  相似文献   

7.
循环流化床粉煤灰“一步酸溶法”提取氧化铝工艺过程中产生的尾渣主要成分为无定形二氧化硅,且具有较高的活性,是制备白炭黑、分子筛、硅酸钠水玻璃的理想原料。对该提铝残渣在氢氧化钠溶液中的溶出过程做了研究,探讨了液固比、碱浓度、溶出时间、溶出温度工艺条件对二氧化硅和氧化铝溶出效果的影响。研究结果表明:在氢氧化钠碱液的浓度为4 mol/L、反应温度为70 ℃、液固比为6、反应时间为4 h的条件下,二氧化硅的溶出率最高,达到93%。提铝残渣碱溶后固体渣经XRD分析,其无定形二氧化硅基本已溶出,剩余物主要为锐钛矿与莫来石等。  相似文献   

8.
以内蒙古某酸法粉煤灰提铝硅渣为对象,研究了其在NaOH溶液中的非晶态SiO2的脱硅行为,通过脱硅反应中脱硅率随时间的变化,研究搅拌速度、反应温度、NaOH溶液浓度对脱硅率的影响.通过拟合实验数据,确定脱硅反应的动力学规律和宏观动力学方程,并计算相应的表观活化能.结果表明:搅拌速度对脱硅率影响较小,提高反应温度和NaOH...  相似文献   

9.
采用一定浓度的氢氧化钠溶液与高铝粉煤灰中可溶性二氧化硅进行反应,考察苛碱浓度、反应温度、反应时间、浆液固含条件对脱硅反应的影响。结果表明,脱硅反应的优化条件为苛碱浓度150g.L-1,温度120℃,反应时间30min,固含量350g.L-1,脱硅粉煤灰铝硅比由1.20提高到1.80以上。  相似文献   

10.
亚熔盐法粉煤灰脱铝渣水热处理后碱含量的影响因素   总被引:1,自引:0,他引:1  
以亚熔盐法处理粉煤灰的脱铝渣为原料,采用动态水热法分解脱碱,研究了不同A/S(Al2O3/SiO2质量比)、C/S(CaO/SiO2质量比)和不同脱铝溶出工艺对硅渣碱含量的影响. 结果表明,随脱铝渣A/S增加,碱含量先降低后升高,脱铝渣A/S为0.11,硅渣Na2O含量降至1.18%,适当的A/S有利于提高硅渣中含铝托贝莫来石的晶化程度;脱铝渣C/S为0.98,硅渣Na2O含量仅有1.31%,随脱铝渣C/S增加,硅渣碱含量增加,C/S过高会降低硅酸钠钙(NaCaHSiO4)的分解率,不利于生成含铝托贝莫来石相;溶出时间和停留时间较长的脱铝渣在脱碱过程中不易生成含铝托贝莫来石.  相似文献   

11.
为实现准东煤灰的绿色化综合利用,笔者研究设计了从准东煤灰中制取氧化铝和白炭黑的工艺流程,确定了最佳工艺条件,并通过SPSS双变量分析比较不同影响因素对提取率影响程度。试验采用准东煤--将军庙原煤,破碎并用马弗炉模拟煤粉炉静态燃烧方式制取灰样。准东煤灰的成分分析和元素分析表明:SiO2占48.84%,Al2O3占31.26%。参照标准制备灰样,对灰样进行SEM分析,发现粘黏性严重,因此试验前先进行机械研磨。采用煤灰与硫酸铵焙烧法制备氧化铝,工艺分为焙烧过程和酸浸过程。因滤液中含有大量杂质铁、钙等元素,采用pH调节法除杂并对除杂效果进行检验,检验结果为除杂率接近100%。从提铝渣中制备白炭黑分为碱浸过程和多次碳分过程。在提铝工艺焙烧过程中,通过提铝率变化曲线及节能角度确定了各因素的最佳试验条件为:焙烧温度600℃,焙烧时间60 min,焙烧配料比1∶6;在提铝工艺酸浸过程中,得到最佳试验条件为:酸浸温度60℃、酸浸时间20 min、H2SO4浓度0.2 mol/L、酸浸液固比50。从提铝渣制备白炭黑研究中,通过SEM观察到提铝渣疏松多孔,有利于进一步的提硅试验。通过XRD对提铝渣分析,得出提铝渣中含有大量硅、钙元素;用K值法(RIR法)求得提铝渣中Si含量及经提铝后的Si损失率为7.64%。得出碱浸过程最佳试验条件为:碱浸温度60℃、碱浸时间30 min、碱浸NaOH浓度3 mol/L、碱浸液固比70,此时Si提取率为99%。采用多次碳分法进行提硅能够满足不同硅含量纯度要求,得到最佳碱浸工艺条件为碳分pH=9.5、CO2通气速率24 m L/min、碳分NaOH浓度0.2 mol/L、碳分液固比80。通过双变量相关性分析,得到各因素对提铝率、SiO2提取率及H2SiO3沉淀率影响程度大小分别为:焙烧温度>焙烧时间>焙烧配料比,酸浸时间>酸浸温度>H2SO4浓度>酸浸液固比,碱浸液固比>碱浸温度>NaOH浓度>碱浸时间,碳分pH>碳分液固比>碳分NaOH浓度>CO2通气速率。通过经济性及可行性分析,说明提出的工艺能有效实现准东煤灰的绿色化综合利用。从提铝后的滤液中重新提取(NH4)2SO4,实现生产原料的再利用;碳分过程后的Na2CO3溶液可通过加入石灰苛化的方式实现NaOH可循环利用于提取工艺生产;本工艺除生产氧化铝和白炭黑外,还能获得Na2SO4等附加产品。  相似文献   

12.
电炉钛渣碱浸除硅、铝与碱浸渣的预氧化焙烧动力学   总被引:3,自引:0,他引:3  
采用碱浸除杂-预氧化焙烧-活化改性-高压酸浸工艺处理云南地区电炉钛渣,制备高品位人造金红石. 研究了电炉钛渣碱浸除硅、铝的机理,考察了搅拌速率、粒度、温度、NaOH浓度、液固质量比、浸出碱试剂单因素对浸出率的影响,SiO2与Al2O3浸出率高达75%和50%;正交实验结果表明,NaOH浓度为1.5 mol/L、液固质量比为8、温度为沸腾温度(92.7℃)、浸出时间为1 h的条件下,浸出效果较理想;通过碱浸渣预氧化,有60%的TiO2以金红石形态析出,且在低于700℃下过程受界面化学反应控制,扩散较快,表观活化能为31 kJ/mol/, 850℃下过程受扩散控制,随空气流量增大氧化率提高.  相似文献   

13.
以粉煤灰和锰渣为原料,采用碱熔融-水热合成法制备沸石分子筛.研究了煅烧温度、原料组成、硅铝比、碱浓度、水热时间和温度对钙离子吸附能力的影响,并利用XRD、SEM-EDS、FT-IR和TG-DSC等手段表征了产物的晶体形貌、骨架结构和热稳定性.结果表明,制备沸石分子筛的最佳工艺条件为:煅烧温度800 ℃,锰渣掺量40%,硅铝比3.5,碱浓度3 mol· L-1,水热温度90 ℃,水热时间16 h,在此条件下制备的NaX型沸石分子筛结晶度较高,700℃下骨架结构未发生坍塌,具有较好的热稳定性,钙离子交换量高达392.58 mgCaCO3/g.  相似文献   

14.
不同硅铝比ZSM-22分子筛的合成   总被引:1,自引:0,他引:1  
吴卓  谭涓  刘靖  尹大元 《工业催化》2010,18(1):26-30
采用静态水热合成法,以氢氧化钾为碱源,硅溶胶为硅源,1,6-己二胺为模板剂,考察了晶化温度[(423~443)K]、晶化时间[(12~72)h]和原料配比对合成ZSM-22分子筛的影响,优化了合成条件。结果表明,最佳合成条件为:晶化温度433 K、晶化时间48 h、n(Al2O3)∶n(SiO2)∶n(K2O)∶n(DAH)∶n(H2O)=0.11∶10∶1.3∶3.0∶400。在此基础上,通过碱度的调变,合成了较纯n(Al2O3)∶n(SiO2)=40~130的ZSM-22分子筛。  相似文献   

15.
在综述我国Al2O3行业及主要铝硅酸盐废渣的产生、排放现状的基础上,分析了Al2O3的回收价值及必要性. Si是碱法回收Al2O3过程中的主要杂质,铝硅酸盐废渣中Al2O3/SiO2质量比(A/S)约为1. 针对低A/S原料,分析了碱法工艺的基本原理,并介绍了4种基于拜耳法的改进方法:水热法、高压水化学/亚熔盐法、烧结法和预脱硅法,前两种通过改进溶出过程的反应条件,改变平衡相区,分别以含Fe相替换的水化钙石榴石和硅酸钠钙为平衡固相,降低平衡固相中的A/S;烧结法和预脱硅法在溶出前进行前处理,将Si固化、溶解脱除无定型SiO2,提高进料的A/S. 与拜耳法相比,4种碱法工艺均有效提高了Al与Si的分离效率. 比较了4种碱法工艺的Al2O3回收效果、适用范围及工业应用情况. 最后指出溶出过程中引入新物质,创造新的溶出体系,是碱法回收Al2O3工艺下一步的研究方向.  相似文献   

16.
采用溶胶-凝胶法制备了不同硅铝配比的CuO/SiO2-Al2O3/堇青石催化剂,通过XRD、BET、XPS等手段对催化剂进行表征,对尿素选择性还原氮氧化物(SCR)的行为进行了研究。结果表明,500℃焙烧后的复合涂层,随着SiO2含量的增加,其物相组成从单纯γ-Al2O3演化为无定形态SiO2与γ-Al2O3晶相共存,比表面积从47.30 m2/g增大到70.25 m2/g。150~400℃范围内的活性测试表明,当温度为250℃,SiO2/Al2O3比为1∶2时,催化剂活性最大为67.0%。  相似文献   

17.
采用经碱熔融-离心提取处理的粉煤灰为原料,经水热反应法研究合成高纯度X型沸石的过程,探讨了碱灰比、焙烧温度对硅铝熔出量的影响,研究了碱度、陈化时间、晶化时间与硅铝比对合成的影响以及其对含Pb2+废水的吸附性能。结果表明:碱灰比为2.3∶1,焙烧温度为680℃时可获得最佳的硅铝熔出量;当SiO2/Na2 O=1(摩尔比),SiO2/Al2O3=3.5(摩尔比),陈化时间为5 h,晶化时间为16 h时可获得高纯度X型沸石。合成沸石表现出对含Pb2+废水较强的吸附能力,在投加0.23 g/100 mL含Pb2+500 mg/L溶液中,调节pH值为5,常温下30 min,Pb2+去除率可达99.6%;吸附容量达到了216.8 mg/g。  相似文献   

18.
以NaA1O2、水玻璃为原料,KOH为碱源,利用水热法合成了高硅铝比钾离子筛.考察了硅铝比、碱度、模板剂、晶化温度和晶化时间对钾离子筛晶相结构、产率和交换容量的影响,通过X射线衍射、化学组成分析、扫描电镜、热重差热分析、Fourier红外光谱对样品进行了表征.结果表明:以四丁基溴化铵为模板剂,物质的量比为6.68K2O:19.3SiO2:1Al2O3:624H2O,120℃条件下合成12 h,获得的高硅铝比钾离子筛为钾型钙十字沸石,化学组成为Si21Al5.1K2.4Na2O55·8H2O;离子筛对纯钾溶液和海水中钾离子的交换量分别达123·22 mg/g和56.96 mg/g,对K+/Na+的选择性系数为95.46,可用于从海水中选择性分离钾盐.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号