首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma-induced charging damage in ultrathin (3-nm) gate oxides   总被引:3,自引:0,他引:3  
Plasma-induced damage in various 3-nm-thick gate oxides (i.e., pure oxides and N2O-nitrided oxides) was investigated by subjecting both nMOS and pMOS antenna devices to a photoresist ashing step after metal pad definition. Both charge-to-breakdown and gate leakage current measurements indicated that large leakage current occurs at the wafer center as well as the wafer edge for pMOS devices, while only at the wafer center for nMOS devices. These interesting observations could be explained by the strong polarity dependence of ultra thin oxides in charge-to-breakdown measurements of nMOS devices. In addition, pMOS devices were found to be more susceptible to charging damage, which can be attributed to the intrinsic polarity dependence in tunneling current between nand p-MOSFETs. More importantly, our experimental results demonstrated that stress-induced leakage current (SILC) caused by plasma damage can be significantly suppressed in N2O-nitrided oxides, compared to pure oxides, especially for pMOS devices. Finally, nitrided oxides were also found to be more robust when subjected to high temperature stressing. Therefore, nitrided oxides appear to be very promising for reducing plasma charging damage in future ULSI technologies employing ultrathin gate oxides  相似文献   

2.
Indispensable for manufacturing of modern CMOS technologies, plasma processes result in charging of dielectric surfaces, thus damaging the gate oxide. A forming gas annealing (FGA) step is usually done at the end of the process to passivate and/or recover this damage. We investigated this problem on thin (3.5 nm) gate oxides by using a series of stress-anneal-stress steps on devices with different level of latent damage. Our results confirm that FGA actually reduces the number of traps responsible for stress-induced leakage current (SILC) or for microbreakdown in ultrathin gate oxides, but also put in evidence that defects induced by plasma treatments and those generated by way of electrical stress feature different anneal kinetics. Further, we have identified two categories of dielectric breakdown events, whose characteristics are strongly modified by the FGA step.  相似文献   

3.
Understanding and minimizing plasma charging damage to ultrathin gate oxides became a growing concern during the fabrication of deep submicron MOS devices. Reliable detecting techniques are essential to understand its impact on device reliability. As the gate oxide thickness of MOSTs rapidly scales down, the conventional nondestructive methods such as capacitor C-V and threshold voltage and subthreshold swing of MOSTs are no longer effective for evaluating this damage in gate oxide. In this paper, the newly developed direct-current current-voltage (DCIV) technique is reported as an effective monitor for plasma charging damage in ultrathin oxide. The DCIV measurements for p-MOSTs with both 50- and 37-Å gate oxides clearly show the plasma charging damage region on the wafers and are consistent with the results of charge-to-breakdown measurements. In comparing with charge-to-breakdown measurement and other conventional methods, the DCIV technique hits the advantages of nondestructiveness, high sensitivity and rapid evaluation  相似文献   

4.
Gate oxide scaling effect on plasma charging damage is discussed for various IC fabrication processes such as metal etching, contact oxide etching, high current ion implantation, and via contact sputtering. Capacitance distortion, stress-induced leakage current, MOSFET characteristics, and circuit performance are used for evaluating the charging damage. We observed that very thin gate oxides are less susceptible to the charging damage because of their lower rate of interface damage, larger charge-to-breakdown, and less device determined stress voltage in the plasma system. We also discuss the diode protection scheme and design techniques for minimizing the charging damage. Latent damage exists after thermal annealing and can be revealed during the subsequent device operation causing circuit performance degradation. High density plasma etching is a trend of the etching technology as it provides better anisotropy, selectivity, and uniformity. Its effects on oxide charging damage is compared with low-density plasma etching. The resistance to process-induced charging damage of future devices appears to be high. This is counter-intuitive and is a good tiding for the future of IC manufacturing. The emergence of alternative gate dielectric raises questions about charging damage that requires further studies.  相似文献   

5.
This paper presents an important observation of plasma-induced damage on ultrathin oxides during O2 plasma ashing by metal “antenna” structures with photoresist on top of the electrodes. It is found that for MOS capacitors without overlying photoresist during plasma ashing, only minor damage occurs on thin oxides, even for oxide thickness down to 4.2 nm and an area ratio as large as 104. In contrast, oxides thinner than 6 nm with resist overlayer suffer significant degradation from plasma charging. This phenomenon is contrary to most previous reports. It suggests that the presence of photoresist will substantially affect the plasma charging during ashing process, especially for devices with ultrathin gate oxides  相似文献   

6.
We investigated the impact of latent plasma-induced damage (PID) on the reliability of nMOSFETs with small gate area and gate-oxide thickness of 3.2 nm. To this purpose, we stressed 1500 devices with different antenna areas by using a staircase-like stress voltage and by monitoring the gate leakage at the gate voltage V/sub G/=+2 V. The stress was always stopped because of an abrupt jump in the gate current. The statistics obtained for the breakdown current are characterized by two different oxide-breakdown modes. The first is the well-known hard breakdown (HB), while the second one, which we called micro breakdown (MB), can be modeled as a double trap-assisted tunneling (D-TAT) mechanism and is characterized by a very small leakage current (around 100 pA at the gate voltage V/sub G/=2 V). In devices with large antenna, i.e., more prone to be damaged by plasma processing, the number of microbroken oxides is larger and breakdown occurs at lower voltages than in reference devices (non plasma damaged). Conversely, the hard breakdown statistics shows only a weak dependence on the gate antenna ratio of plasma damaged devices. This has been explained by considering the intrinsic nature of latent plasma-induced oxide defects, linked to the different generation mechanisms involved in micro breakdown and hard breakdown phenomena.  相似文献   

7.
Plasma-induced damage in various 3-nm thick gate oxides (i.e., pure O2 and N2O-nitrided oxides) was investigated by subjecting both nMOS and pMOS antenna devices to a photoresist ashing step after metal pad definition. Gate leakage current measurements indicated that large leakage current occurs at the wafer center as well as at the wafer edge for pMOS devices, while it occurs only at the wafer center for nWOS devices. These interesting observations could be explained by the polarity dependence of ultrathin oxides in charge-to-breakdown measurements. Additionally, ultrathin N2O-nitrided oxides show superior immunity to charging damage, especially for pMOS devices  相似文献   

8.
Ultrathin nitride/oxide (~1.5/0.7 nm) dual layer gate dielectrics have been formed using remote plasma enhanced CVD of nitride onto plasma-grown oxide interface layers. High accumulation capacitance (1.72 μF/cm2) is measured and the equivalent oxide thickness is 1.6 nm after quantum effect corrections. Compared to 1.6 nm oxides, a tunneling current reduction of more than 100 fold is found for devices with 1.6 nm N/O dielectrics due to increased film thickness and interface nitridation. Hole channel mobility decreases by about 5%, yielding very good P-MOSFET current drive. Excellent dielectric reliability and interface robustness are also demonstrated for P-MOSFET's with N/O dielectrics  相似文献   

9.
AC hot-carrier effects in n-MOSFETs with thin (~85 Å) N2O-nitrided gate oxides have been studied and compared with control devices with gate oxides grown in O2. Results show that furnace N2O-nitrided oxide devices exhibit significantly reduced AC-stress-induced degradation. In addition, they show weaker dependences of device degradation on applied gate pulse frequency and pulse width. Results suggest that the improved AC-hot-carrier immunity of the N2O-nitrided oxide device may be due to the significantly suppressed interface state generation and neutral electron trap generation during stressing  相似文献   

10.
Plasma-charging damage on gate dielectrics of MOS devices is an important issue because of shrinking dimension, plasma nonuniformity, and effects on high-k gate dielectrics. A comprehensive study of plasma-charging effects on the electrical properties of MOS devices was investigated in this work. Shunt diodes were used to estimate the charging polarity distribution. For high-frequency application, the 1/f noise was found to be a promising index for assessing plasma-charging damage. Gate oxynitride formed by two-step nitridation was demonstrated to have better electrical reliability as compared to the conventional one-step nitridation, especially accompanied by amorphous silicon gate electrode. This improvement could be attributed to the relaxation of interface stress by amorphous silicon gate electrode and the suppression of hydrogen effects by gate oxynitride using two-step nitridation. Plasma-charging damage on Si3N4 and Ta2O5 gate dielectrics with high dielectric constant was also investigated. For MOS devices with Si3N4 film, the leakier characteristic and shorter time to breakdown reveal its inferior reliability. For MOS devices with Ta2O5 gate dielectric, the trap-assisted current mechanism makes a thicker physical thickness of Ta2O5 film more susceptible to plasma-charging-induced damage. Smaller physical thickness of Ta2O5 film in MOS devices is favorable due to the better reliability and comparable plasma-induced electrical degradation  相似文献   

11.
Direct tunneling (D-T) in Si metal-oxide-semiconductor (MOS) devices having 1.8 to 3 nm thick gate oxides is reduced approximately tenfold by monolayer Si-dielectric interface nitridation with respect to devices with nonnitrided interfaces. The reduction is independent of gate oxide-equivalent thickness, and gate or substrate injection, and extends into the Fowler-Nordheim tunneling (F-N-T) regime for thicker oxides as well. A barrier layer model, including sub-oxide transition regions, has been developed for the interface electronic structure for tunneling calculations using X-ray photoelectron spectroscopy data. These calculations provide a quantitative explanation for the observed tunneling current reductions  相似文献   

12.
Time dependent dielectric breakdown of thin oxides, 1.5 to 5.0 nm has been studied for different gate-poly grain structures. The poly grain was varied by the poly deposition, and the source-drain (S/D) rapid thermal anneal (RTA) conditions. The study, which was done on fully fabricated CMOS devices, showed substantial reliability degradation in thin gate oxides (below 2.0 nm), when using S/D RTA temperatures above 1000°C. The results can be explained in terms of the interface roughness at the gate poly interface induced by the S/D RTA temperature above the viscoelastic point of the SiO2. A possible mechanism for the drastic reliability degradation in thin gate oxides, is the protrusion of poly grains into the softening oxide at high temperature  相似文献   

13.
A triple-wall oxidation furnace system has been designed and implemented successfully. This paper explains the system in detail and discusses the reliability of the gate oxides grown in such a system. The 9.3 nm gate oxides display an improved dielectric breakdown field strength (15 MV/cm), and charge-to-breakdown (45C/cm2) with less interface trap generation than the gate oxides grown in a conventional single-wall oxidation system. From these results, we conclude the microscopic defects as well as the macroscopic defects are better controlled in a triple-wall oxidation system than in a conventional single-wall oxidation system. This new system permits the study of the Si-SiO2 interface with a control on the number of electronic defects inherent in the processing of MOS devices.  相似文献   

14.
We have investigated RIE-induced damage in MOS devices with thermal oxide as well as N2O-annealed oxide as gate dielectrics. A systematic improvement in robustness against RIE-induced damage is seen when N2O flow rate and/or N2O anneal temperature are increased. We have demonstrated a N2O anneal process at 900°C, which provides a robust SiO2/Si interface against plasma damage and hot carrier stress  相似文献   

15.
One major challenge in advanced CMOS technology is to have adequate dopant activation at the polycrystalline silicon (poly-Si) gate/gate oxide interface to minimize the poly-Si depletion effect. In this paper, laser thermal processing (LTP) was employed to fabricate single or dual-layer poly-Si-gated MOS capacitors with ultrathin gate oxides. Capacitance-voltage data show that the carrier concentration at the poly-Si gate/gate oxide interface increases substantially when the devices are subjected to LTP prior to a rapid thermal anneal (RTA). Thus, LTP readily reduces the poly-depletion thickness in MOS devices. For p/sup +/-gated capacitors, this is achieved with boron penetration that is equivalent to the control sample with 1000/spl deg/C, 5 s RTA (without LTP). In addition, results from secondary ion mass spectrometry indicate that the concentration of dopants near the critical gate/gate oxide interface increases significantly after a post-LTP anneal, in good agreement with the electrical data. Time-dependent dielectric breakdown studies show that the gate oxide reliability is not degraded even after LTP at high fluences.  相似文献   

16.
Charging damage induced in oxides with thickness ranging from 8.7 to 2.5 nm is investigated. Results of charge-to-breakdown (Qbd) measurements performed on control devices indicate that the polarity dependence increases with decreasing oxide thickness at both room and elevated temperature (180°C) conditions. As the oxide thickness is thinned down below 3 nm, the Qbd becomes very sensitive to the stressing current density and temperature. Experimental results show that severe antenna effect would occur during plasma ashing treatment in devices with gate oxides as thin as 2.6 nm. It is concluded that high stressing current level, negative plasma charging, and high process temperature are key factors responsible for the damage.  相似文献   

17.
Ultrathin (~1.9 nm) nitride/oxide (N/O) dual layer gate dielectrics have been prepared by the remote plasma enhanced chemical vapor deposition (RPECVD) of Si3N4 onto oxides. Compared to PMOSFET's with heavily doped p+-poly-Si gates and oxide dielectrics, devices incorporating the RPECVD stacked nitrides display reduced tunneling current, effectively no boron penetration and improved interface characteristics. By preventing boron penetration into the bulk oxide and channel region, gate dielectric reliability and short channel effects are significantly improved. The hole mobility in devices with N/O dielectrics with equivalent oxide thickness between 1.8 nm and 3.0 nm is not significantly degraded. Because nitrogen is transported to the substrate/dielectric interface during post-deposition annealing, degradation of mobility during hot carrier stressing is significantly reduced for N/O devices. Compared with oxide, the tunneling current for N/O films with ~1.9 nm equivalent oxide thickness is lower by about an order of magnitude due to the larger physical thickness. Suppression of boron transport in nitride layers is explained by a percolation model in which boron transport is blocked in sufficiently thick nitrides, and is proportional to the oxide fraction in oxynitride alloys  相似文献   

18.
A new gate current model which considers the hot-electron induced oxide damage in n-MOSFET's was developed for the first time. The spatial distributions of oxide damage, including the interface state (Nit ) and oxide trapped charge (Qox) were characterized by using an improved gated-diode current measurement technique. A numerical model feasible for accurately simulating gate current degradation due to the stress generated Nit and Qox has thus been proposed. Furthermore, the individual contributions of Nit and Qox to the degradation of gate current can thus be calculated separately using these oxide damage. For devices stressed under maximum gate current biases, it was found that the interface state will degrade the gate current more seriously than that of the oxide trapped charge. In other words, the interface states will dominate the gate current degradation under IG,max. Good agreement of the simulated gate current has been achieved by comparing with the measured data for pre-stressed and post-stressed devices. Finally, the proposed degradation model is not only useful for predicting the gate current after the hot-electron stress, but also provides a monitor that is superior to substrate current for submicron device reliability applications, in particular for EPROM and flash EEPROM devices  相似文献   

19.
MOS capacitor structures with plasma damaged oxides have been used to demonstrate a new technique for profiling slow traps at the Si-SiO 2 interface. The technique measures the density and trapping rate of slow traps by stepping the gate voltage in small increments and monitoring the resulting substrate current transients, thereby producing a profile of the traps in energy and response time. The response time is a function of the trap's energy position and distance from the interface. Some traps created by plasma etching are not obvious in quasistatic CV measurements, yet are clearly evident when the new technique is used. Results show an increase in slow trap densities and response times in the upper half of the silicon bandgap with long plasma overetch times. In comparison, wet etched control devices show only low densities of slow traps with shorter response times around the midgap  相似文献   

20.
Joshi  A.B. Lo  G.Q. Kwong  D.L. Xie  J. 《Electronics letters》1990,26(21):1741-1742
MOS devices were fabricated with dry thermal oxides, nitrided oxides and annealed nitrided oxides. The anneals were performed in O/sub 2/ or N/sub 2/ ambients using rapid thermal processing. Charge to breakdown, Q/sub bd/, and interface state generation, Delta D/sub it/, for these devices were studied using Fowler-Nordheim electron injection. The gate bias polarity dependence of Q/sub bd/ and Delta D/sub it/ was investigated. A model is proposed to explain the observed dependence of these quantities on the polarity of injection and process parameters.<>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号