首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对高性能CrN涂层无法实现低温可控制备的技术瓶颈,利用具备高溅射材料离化率的高功率脉冲磁控溅射技术,调控同步脉冲偏压,改善涂层生长动力学条件,实现CrN涂层的低温可控沉积。开展同步脉冲偏压与涂层化学组成、组织结构、力学、摩擦学及耐腐蚀性能间关联关系研究。同步脉冲偏压在提升沉积离子束流迁移能的同时可显著降低荷能Ar+对成膜表面的持续轰击作用,达到改善涂层致密性及膜基结合力的目的。此外,沉积CrN涂层晶粒细化显著,硬度及弹性模量明显升高,最高可达13.8 GPa、236.7 GPa。涂层力学性能优化及致密性提升显著改善了摩擦学与耐腐蚀性能,涂层磨损率最低可达2.49×10-15m3/(N·m),同时涂层可耐受120h中性盐雾腐蚀环境考核。为实现高性能CrN涂层的低温可控制备,扩展其在温度敏感基体领域的适用范围提供了新的设计思路与技术支撑。  相似文献   

2.
沉积偏压对涂层的结构与性能具有重要影响,为研究其对AlCrTiN纳米复合涂层成分、组织结构、力学与抗高温氧化性能的影响规律,采用磁控溅射技术,改变沉积偏压(-30、-60、-90、-120 V)制备四种AlCrTiN纳米复合涂层。利用X射线衍射仪、扫描电子显微镜、纳米压痕仪等仪器表征涂层的组织结构、成分、力学性能和抗高温氧化性能。研究结果表明:不同偏压下制备的AlCrTiN纳米复合涂层均为NaCl型fcc-(Al,Cr,Ti)N相结构。随着沉积偏压增大,涂层由沿(111)晶面择优生长转变为无明显的择优生长取向,晶粒尺寸降低,残余应力和硬度增大。偏压为-90 V与-120 V时,涂层表面更加致密,具有更高的硬度和弹性模量。在800℃与900℃氧化1 h后,所有涂层表面均生成一层连续致密的Al2O3膜。随着沉积偏压增加,氧化膜厚度逐渐降低,表明抗高温氧化性能逐渐增强,这是因为高偏压下涂层组织更致密,且晶粒更细小。研究成果对AlCrTiN纳米复合涂层的综合性能提升与工程化应用具有一定指导意义。  相似文献   

3.
TiSiCN 硬质纳米复合涂层因其优异的力学性能和摩擦学性能而被广泛应用于各类机械零部件表面的防护涂层,但是超硬耐磨 TiSiCN 纳米复合涂层的可控制备技术仍然有待进一步研究。 采用高功率脉冲磁控溅射技术,微脉冲振荡开启时间 <i>τ</i>on = 50 μs,平均靶功率 4~ 8 kW,在 AISI 316L 不锈钢和 Si(100)单晶硅表面沉积了一系列不同成分的 TiSiCN 纳米复合涂层。 通过 XRD、FESEM、TEM、Raman 表征了涂层的结构和成分,采用纳米压痕仪和显微硬度计表征涂层的硬度和断裂韧性 KIC 。 通过摩擦磨损试验机表征了涂层在不同介质环境下的摩擦学性能,利用表面轮廓仪和光学显微镜对磨痕形貌进行进一步分析。 分析结果表明 TiSiCN 涂层由非晶包覆晶粒尺寸为 4 ~ 11 nm 的 TiCN 纳米晶构成。 随着靶功率的增加,涂层的硬度从 32. 6 GPa 增至 41. 3 GPa,膜-基结合力等级均为 HF2~ HF1。 8 kW 制备的 TiSiCN 涂层在干摩擦、酸、碱、油溶液环境下的磨损率分别为 5. 9×10 -6 mm 3N -1m -1 、4. 3×10 -5 mm 3N -1m -1 、9. 1×10 -5 mm 3N -1m -1 和 1. 28×10 -9 mm 3N -1m -1 。 研究成果表明采用高功率脉冲磁控溅射技术制备的 TiSiCN 纳米复合涂层在酸、碱、油溶液环境下均具有优异的耐摩擦学性能,在各类腐蚀环境中具有优异的应用前景。  相似文献   

4.
目的 制备高纯度、超硬、高耐磨的Zr-B-N纳米复合涂层。方法 在反应气体中掺入还原性气体H2,利用氢元素强还原性去除真空室以及反应气氛中残留的O杂质,采用脉冲直流磁控溅射技术,通过调节N2+H2混合气体流量制备高纯度Zr-B-N涂层。利用扫描电镜、纳米压痕仪、摩擦磨损试验机等设备对涂层的微观结构、力学性能和摩擦性能进行测试,并分析其变化机理。结果 随着N2+H2流量的增加,Zr-B-N涂层内N含量在N2+H2流量为10 mL/min时达到最高。从截面形貌可以看出,涂层结构由粗大的柱状晶逐步转变为玻璃状细小柱状晶结构,涂层更加致密,呈现典型的纳米复合结构。微量H元素的掺入,减少了涂层制备过程中O相关化学键的生成,制备出的Zr-B-N涂层晶粒的生长环境得到改善。在N2+H2流量为 10 mL/min时,涂层的硬度和弹性模量达到最大值40.26 GPa和532.98 GPa,临界载荷最大约为60.1 N,摩擦系数较小,为0.72,磨损率在此时最低,为1.12×10–5mm3/(N.m)。结论 当N2+H2流量为10 mL/min时,制备出了超硬Zr-B-N纳米复合涂层。适量氢元素的掺入,充分去除真空室内氧杂质,改善了涂层中晶粒的生长环境,有效地提高涂层的硬度及摩擦磨损性能。  相似文献   

5.
目的 为了大幅提高机械零部件表面的硬度和耐磨性能,探究制备具有低摩擦因数、高硬度和良好耐磨性的MoCN涂层。方法 采用中频磁控溅射技术在不锈钢基板和硅片上,通过控制C2H2气体(纯度99.99%,0、3、6、9 mL/min)的量来制备具有不同含碳量的MoCN纳米复合涂层。通过X射线衍射仪和拉曼光谱仪分析涂层主要的物相结构,采用扫描电子显微镜(SEM)和原子力显微镜(AFM)表征涂层的表面和断面形貌。采用连续刚度法,利用纳米压痕仪测试涂层的纳米硬度和弹性模量。利用自动划痕试验机和光学显微镜(OM)评估涂层与基体之间的黏附强度。最后利用多功能摩擦磨损试验机进行磨损试验,通过SEM对试验后的涂层进行磨损形貌分析,并对涂层的摩擦学性能进行评价。结果 涂层微观组织和力学性能表征结果表明,MoCN涂层由MoN相和非晶态碳相组成。随着涂层中碳含量的增加,涂层与基体之间的结合力和涂层表面的粗糙度都呈现逐渐减小的趋势,其涂层的划痕失效临界载荷和表面粗糙度的最小值分别为6.90 N和6.80 nm,但是涂层的纳米硬度从7.36 GPa增至10.23 GPa。摩...  相似文献   

6.
MoN薄膜是一种具有潜在应用价值的薄膜材料,但对于其结构和性能的研究还较少。采用直流磁控溅射技术在304不锈钢基体表面沉积MoN薄膜,研究了脉冲偏压对MoN薄膜结构和性能的影响,并系统研究了MoN薄膜在不同摩擦条件下的摩擦磨损行为。采用X射线衍射仪和扫描电镜分析薄膜的晶相结构、晶粒尺寸、表面及断面形貌,采用HMV-2T显微硬度仪测试薄膜的显微硬度。采用UMT-TriboLab多功能摩擦磨损试验机评价薄膜的摩擦磨损性能,并用扫描电镜观察磨损表面,分析其磨损机制。结果表明:脉冲偏压显著影响直流磁控沉积的MoN薄膜的晶相结构、表面形貌、断面结构、硬度和摩擦磨损性能;随脉冲偏压的增大,MoN薄膜的膜厚、硬度都先增大后减小,而薄膜的磨损率却先减小后增大,其中-500 V脉冲偏压下沉积的MoN薄膜具有最高硬度为7731 N/mm2,以及最低的磨损率为5.8×10-7 mm3/(N·m)。此外,MoN薄膜在不同载荷和转速的摩擦条件下表现出不同的摩擦学行为。  相似文献   

7.
脉冲偏压占空比对复合离子镀TiCN涂层结构和性能的影响   总被引:1,自引:0,他引:1  
采用多弧离子镀和磁控溅射复合离子镀技术在高速钢基底上制备TiCN涂层,通过改变脉冲偏压占空比的大小获得了不同的涂层试样,利用台阶仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、维氏硬度计等对涂层进行表征,研究占空比对TiCN涂层组织结构和力学性能的影响。结果表明:随着脉冲偏压占空比的增加,TiCN涂层的表面大颗粒逐渐减少,表面形貌得到改善。涂层结构中,(111)晶面的择优取向趋势明显,沉积速率和显微硬度均出现先增大后减小的趋势,且在占空比为40%时均达最大值。TiCN涂层的最高硬度为3 800 HV0.025,约为基底硬度的4倍。  相似文献   

8.
由于真空度的要求,制备氮化物涂层时将不可避免的会有氧的存在,因此了解氧元素对涂层性能的影响至关重要。采用高功率脉冲磁控溅射(HIPIMS)技术在Ar/N2/O2混合气氛下制备AlCrSiON涂层,研究氧含量(0%~30.4%,原子数分数)对涂层结构、力学性能和摩擦学性能的影响及作用机制。结果表明,AlCrSiN涂层由fcc-Cr N、β-Cr2N和hcp-Al N组成,AlCrSiON则由(Cr,Al)N、立方Cr2N和(Cr,Al)(O,N)组成。AlCrSiN涂层硬度为(14.3±1.8)GPa,随着氧含量增加至24.3%,涂层硬度增加至(20.1±3.0)GPa;继续增加氧含量则将导致涂层硬度下降。当环境温度由室温增加至400℃,涂层摩擦因数由0.6~0.7增加至0.9;温度升至800℃,涂层摩擦因数降至0.4。氧含量对涂层高温摩擦因数的影响较小,对涂层的磨损率却有着重要影响。当氧含量为30.4%时,AlCrSiON涂层具有最优耐磨损性能。  相似文献   

9.
基体偏压对TiAlN涂层性能的影响   总被引:3,自引:2,他引:1  
张皓扬  周兰英  田建朝 《表面技术》2006,35(6):15-16,45
基体偏压是多弧离子镀沉积TiAlN涂层工艺中的一个重要参数,它对涂层的结构以及涂层生长速度有重要影响.通过改变沉积过程中的基体偏压,发现TiAlN涂层表面熔滴的密度和直径随基体负偏压的增加而减小,涂层的显微硬度随着基体负偏压的增加而增加,孔隙率随着基体负偏压的升高而降低.  相似文献   

10.
为了揭示银对TaC涂层结构和摩擦学性能的影响,采用磁控溅射技术在Ti-6Al-4V钛合金表面制备了TaC和TaC-Ag涂层.采用X射线衍射仪、扫描电子显微镜、透射电子显微镜及纳米压痕仪等检测了涂层的结构、表面和截面形貌及硬度;通过高温摩擦磨损试验检测了涂层的高温摩擦学性能.结果表明:TaC涂层为柱状晶结构,择优取向为T...  相似文献   

11.
目的 实现性能优异的CrN薄膜在低温沉积条件下的可控制备。方法 利用高功率脉冲磁控溅射技术(HiPIMS),通过调控脉冲放电波形(可调控脉冲放电模式-MPP、双极脉冲放电模式-BPH)制备了系列低温沉积工艺下的CrN薄膜。选用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、原子力显微镜(AFM)、纳米硬度测试仪及球盘摩擦试验仪表征了CrN薄膜的组织结构、微观形貌、摩擦学性能。结果 相对于传统的直流磁控溅射技术(DCMS),HiPIMS具备高溅射材料离化率,偏压作用下产生的荷能离子对成膜表面的持续轰击作用,有效提升了低温沉积条件下成膜粒子的表面迁移能,显著抑制了贯穿柱状晶的连续生长,达到了细化晶粒,改善薄膜致密性的目的。BPH模式下沉积的薄膜表面光滑致密,表面粗糙度可达4.6 nm。细晶强化作用及薄膜致密性提升使得BPH模式下制备的CrN薄膜硬度最高,可达(15.6±0.8) GPa。此外,BPH模式下沉积的CrN薄膜具备最为优异的摩擦学性能,摩擦系数低(~0.3)且运行平稳,并且在高速及重载作用下,仍能表现出优异的摩擦磨损性能。结论 HiPIMS技术中的双极脉冲放电模式可显著提升沉积粒子表面迁移能,提升CrN薄膜沉积反应动力学过程,实现低温条件下性能优异的CrN薄膜的可控制备。  相似文献   

12.
李玉阁  朱小鹏  吴彼  雷明凯 《表面技术》2020,49(12):220-227
目的研究Ti6Al4V基TiAlSiN涂层在800℃下的抗循环氧化性能。方法采用高功率调制脉冲磁控溅射技术,通过调节N2/Ar的流量比fN2,在Ti6Al4V合金和Si(100)上沉积了一系列不同Si含量的TiAlSiN涂层。通过X射线衍射仪、扫描电子显微镜、电子探针、透射电镜和纳米压痕仪,表征了TiAlSiN涂层的成分、相组成、微结构和硬度,并通过X射线衍射仪和扫描电子显微镜,进一步对Ti AlSiN涂层在800℃下循环氧化后的微观结构和形貌进行分析。结果脉冲平均功率为2k W时,fN2由10%增至30%,TiAlSiN涂层的Si含量(以原子数分数计)由6.1%增加至16.4%,涂层中Ti和Al含量则相应地降低。当fN2为10%时,TiAlSiN涂层呈现典型的X射线非晶结构特征,涂层中N含量(以原子数分数计)约为47%;当fN2为30%时,TiAlSiN涂层呈现Ti Al N和非晶相的混合结构。TEM结果表明,涂层中TiAlN晶粒尺寸约为5nm并均匀镶嵌在非晶相上。所有沉积于Si基底上的TiAlSiN涂层均具有相近的纳米硬度、弹性模量及残余应力,分别为17 GPa、225 GPa和–...  相似文献   

13.
Ti-Si-N hard coatings were deposited on steel substrates by reactive unbalanced magnetron sputtering from Ti and Si elemental targets in a mixture of Ar and N2 gases.The influences of negative bias voltage(in the range of-30 to-80 V)on the mechanical properties of the coatings were investigated.In particular,the critical cycle during dynamic impact tests was employed to indicate the bonding strength of the coatings.It was found that the Ti-Si-N coatings prepared at lower constant bias voltages could effectively improve the adhesion and the cyclic impact performance,but their hardness was dropped significantly to 13 GPa at a bias of-30 V.Higher bias voltage values induced greater hardness.A maximum hardness of 47 GPa was obtained at a bias of-60 V.However,the coating adhesion was worse in this case,and the number of impact cycles(~8×10 3)that the coatings could endure was much shorter than that of TiN binary coatings(~2×104).On the other hand,the bias voltage was varied linearly from-40 to-60 V during Ti-Si-N deposition.Under this circumstance,the hardness of the coatings deposited with the bias-graded configuration remained very high(42 GPa),and the adhesion strength was improved substantially.Also,the critical impact cycle could reach as high as 1.8×104.Therefore,bias-graded deposition can provide an effective processing route to prepare Ti-Si-N superhard coatings with high adhesion strength and impact resistance.  相似文献   

14.
利用HIPIMS与DCMS共沉积技术制备AlCrTiN复合硬质涂层,通过调控Al Cr靶脉冲峰值电流来制备不同峰值电流下的AlCrTiN涂层。采用XRD、SEM等分析手段表征不同峰值电流下AlCrTiN涂层的组织结构及微观形貌;通过纳米压痕、真空退火、高温摩擦磨损试验分析涂层的力学性能、热稳定性能及摩擦学性能。结果表明:AlCrTiN涂层为典型的面心立方结构,随峰值电流的增加,(111)及(200)晶面呈现竞争生长的状态;随真空退火温度上升,各涂层硬度值出现明显下降。1 000℃退火后,各涂层硬度维持在17 GPa附近;随摩擦环境温度的上升,各涂层摩擦因数整体呈下降趋势;280 A所制备涂层因高温抗氧化性能及磨屑排出能力的不足导致其高温磨损率迅速增加,800℃下其磨损的主要形式为氧化磨损和粘着磨损。  相似文献   

15.
Cr-Cu-N coatings with copper content from 0 at%to 6.8 at%were deposited on silicon and M2 steel by ion beam assisted magnetron sputtering.The microstructure and composition of the coatings were characterized using SEM,GDOES,XRD and XPS.The mechanical properties of the coatings were tested on a standard hardness tester.The tribological behavior of the coatings in dry wear condition was studied by means of ball-on-disc wear test.The experimental results show that addition of copper can restrict the columnar crystal growing to a certain degree.XRD and XPS analysis indicate that coatings are mainly composed of Cr and CrN phase.Cu is mainly existed in a free state in the coatings.Copper adding has no obvious effects on the hardness of the coatings.However,the coatings fracture toughness can be improved by doped copper.The coefficient of friction of the coatings against bearing steel is in the range of 0.25-0.6 changing with the copper content.The coating with 2.6 at%copper shows the lowest coefficient of friction about 0.25 and wear rate which is about one tenth of that of the coating with 6.8 at%copper.The higher coefficient of friction and wear rate of the coating with 6.8at%copper may be attributed to its lower bonding strength.  相似文献   

16.
司东宏  薛玉君  申晨 《表面技术》2010,39(3):10-12,99
制备了纯Ni镀层和Ni-ZrO2纳米复合镀层,并在沉积过程中引入超声波制备了超声Ni-ZrO2纳米复合镀层,对比分析了3种镀层的微观结构及高温抗氧化性、显微硬度、耐磨性。结果表明,超声电沉积Ni-ZrO2纳米复合镀层晶粒尺寸细小,具有良好的高温抗氧化性能、高的显微硬度和优良的耐磨性,并进一步分析了纳米颗粒和超声波在提高镀层性能方面所起的作用。  相似文献   

17.
Nanocomposite coatings of TiN/a-C were prepared on tool steel substrates using a multitarget reactive DC magnetron sputtering process at various TiN layer thicknesses (0.6-2.8 nm). The a-C layer thickness was approximately 0.45 nm. Structural characterisation of the coatings was done by X-ray diffraction (XRD). Incorporation of an a-C phase in TiN matrix reduced crystallite size of the coatings, as revealed by XRD and atomic force microscopy. XRD data showed that the nanocomposite coatings exhibited {111} texture and the average crystallite size was ca. 7.5-9.0 nm. Nanoindentation data showed that 1.5 μm thick nanocomposite coatings exhibited a maximum hardness of 5100 kg mm?2. The potentiody-namic polarisation of 1.5 μm thick coatings in 0.5 M HCl solution indicated that the nanocomposite coalings exhibited superior corrosion protection of the tool steel substrate as compared to the single layer TiN coatings of similar thicknesses. Enhancement in the corrosion behaviour of the nanocomposite coatings has been attributed to small crystallite size and dense microstructure. Potentiodynamic polarisation studies conducted on ca. 100 nm thick nanocomposite coatings revealed that for a given a-C layer thickness the corrosion current decreased with a decrease in TiN layer thickness. This was supported by scanning electron microscopy (SEM) studies on the corroded samples. The SEM micrographs showed that density and diameter of the corrosion pits were smaller for nanocomposite coatings as compared to single layer TiN coatings of similar thicknesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号