首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel class of preconditioners for the iterative solution of the sequence of symmetric positive‐definite linear systems arising from the numerical discretization of transient parabolic and self‐adjoint partial differential equations. The preconditioners are obtained by nesting appropriate projections of reduced‐order models into the classical iteration of the preconditioned conjugate gradient (PCG). The main idea is to employ the reduced‐order solver to project the residual associated with the conjugate gradient iterations onto the space spanned by the reduced bases. This approach is particularly appealing for transient systems where the full‐model solution has to be computed at each time step. In these cases, the natural reduced space is the one generated by full‐model solutions at previous time steps. When increasing the size of the projection space, the proposed methodology highly reduces the system conditioning number and the number of PCG iterations at every time step. The cost of the application of the preconditioner linearly increases with the size of the projection basis, and a trade‐off must be found to effectively reduce the PCG computational cost. The quality and efficiency of the proposed approach is finally tested in the solution of groundwater flow models. © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd.  相似文献   

2.
In this work, we compare the fully implicit (FI) and implicit pressure‐explicit saturation (IMPES) formulations for the simulation of water injection in fractured media. The system of partial differential equations is discretized within the discrete‐fracture framework using a control‐volume method. A unique feature of the methodology is that there is no need for the computation of matrix–fracture transfer terms. The non‐linear system of equations resulting from the FI formulation is solved with state‐of‐the‐art Newton and tensor methods. Direct and Krylov iterative methods are employed to solve the system resulting from the Newton linearization. The performance of the FI and IMPES formulations is compared with numerical testing. Results show that the contrast between matrix and fracture properties affects the performance of both IMPES and FI formulations and that the tensor method outperforms all the Newton solvers for the near‐singular Jacobian matrix. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
An efficient iterative method for solution of the linear equations arising from a Hermite boundary integral approximation has been developed. Along with equations for the boundary unknowns, the Hermite system incorporates equations for the first‐order surface derivatives (gradient) of the potential, and is therefore substantially larger than the matrix for a corresponding linear approximation. However, by exploiting the structure of the Hermite matrix, a two‐level iterative algorithm has been shown to provide a very efficient solution algorithm. In this approach, the boundary function unknowns are treated separately from the gradient, taking advantage of the sparsity and near‐positive definiteness of the gradient equations. In test problems, the new algorithm significantly reduced computation time compared with iterative solution applied to the full matrix. This approach should prove to be even more effective for the larger systems encountered in three‐dimensional analysis, and increased efficiency should come from pre‐conditioning of the non‐sparse matrix component. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a comprehensive finite‐element modelling approach to electro‐osmotic flows on unstructured meshes. The non‐linear equation governing the electric potential is solved using an iterative algorithm. The employed algorithm is based on a preconditioned GMRES scheme. The linear Laplace equation governing the external electric potential is solved using a standard pre‐conditioned conjugate gradient solver. The coupled fluid dynamics equations are solved using a fractional step‐based, fully explicit, artificial compressibility scheme. This combination of an implicit approach to the electric potential equations and an explicit discretization to the Navier–Stokes equations is one of the best ways of solving the coupled equations in a memory‐efficient manner. The local time‐stepping approach used in the solution of the fluid flow equations accelerates the solution to a steady state faster than by using a global time‐stepping approach. The fully explicit form and the fractional stages of the fluid dynamics equations make the system memory efficient and free of pressure instability. In addition to these advantages, the proposed method is suitable for use on both structured and unstructured meshes with a highly non‐uniform distribution of element sizes. The accuracy of the proposed procedure is demonstrated by solving a basic micro‐channel flow problem and comparing the results against an analytical solution. The comparisons show excellent agreement between the numerical and analytical data. In addition to the benchmark solution, we have also presented results for flow through a fully three‐dimensional rectangular channel to further demonstrate the application of the presented method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the convergence properties of iterative schemes for the solution of finite element mass matrix equations that arise through the application of a Taylor-Galerkin algorithm to solve instationary Navier-Stokes equations. This is a time-stepping algorithm that involves Galerkin mass matrix equations at fractional stages within each time-step. Plane Poiseuille flow and shear-driven cavity flow are selected as benchmark problems on which to investigate the effects of various choice of scheme and time-step dependency. The iterative convergence of each mass matrix equation for a single fractional stage is studied, both at the element and the system matrix level. The underlying theory is confirmed and it is shown how optimal iterative convergence rates may be achieved for a Jacobi scheme by employing an appropriate acceleration factor. Moreover, this factor is trivial to compute. The consequential effects on the convergence of the time-stepping procedure to reach steady-state are also considered where non-linear effects are present.  相似文献   

6.
We present a novel partitioned coupling algorithm to solve first‐order time‐dependent non‐linear problems (e.g. transient heat conduction). The spatial domain is partitioned into a set of totally disconnected subdomains. The continuity conditions at the interface are modeled using a dual Schur formulation where the Lagrange multipliers represent the interface fluxes (or the reaction forces) that are required to maintain the continuity conditions. The interface equations along with the subdomain equations lead to a system of differential algebraic equations (DAEs). For the resulting equations a numerical algorithm is developed, which includes choosing appropriate constraint stabilization techniques. The algorithm first solves for the interface Lagrange multipliers, which are subsequently used to advance the solution in the subdomains. The proposed coupling algorithm enables arbitrary numeric schemes to be coupled with different time steps (i.e. it allows subcycling) in each subdomain. This implies that existing software and numerical techniques can be used to solve each subdomain separately. The coupling algorithm can also be applied to multiple subdomains and is suitable for parallel computers. We present examples showing the feasibility of the proposed coupling algorithm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The consistency and stability of a Thomas–Gladwell family of multistage time‐stepping schemes for the solution of first‐order non‐linear differential equations are examined. It is shown that the consistency and stability conditions are less stringent than those derived for second‐order governing equations. Second‐order accuracy is achieved by approximating the solution and its derivative at the same location within the time step. Useful flexibility is available in the evaluation of the non‐linear coefficients and is exploited to develop a new non‐iterative modification of the Thomas–Gladwell method that is second‐order accurate and unconditionally stable. A case study from applied hydrogeology using the non‐linear Richards equation confirms the analytic convergence assessment and demonstrates the efficiency of the non‐iterative formulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The discrete element method (particle dynamics) is an invaluable tool for studying the complex behavior of granular matter. Its main shortcoming is its computational intensity, arising from the vast difference between the integration time scale and the observation time scale (similar to molecular dynamics). This problem is particularly acute for macroscopically quasistatic deformation processes. We first provide the proper definition of macroscopically quasistatic processes, on the basis of dimensional analysis, which reveals that the quasistatic nature of a process is size‐dependent. This result sets bounds for application of commonly used method for computational acceleration, based on superficially increased mass of particles. Next, the dimensional analysis of the governing equations motivates the separation of time scales for the numerical integration of rotations and translations. We take advantage of the existence of fast and slow variables (rotations and translations) to develop a two‐timescales algorithm based on the concept of inertial manifolds suggested by Gear and Kevrekidis. The algorithm is tested on a 2D problem with axial strain imposed by rigid plates and pressure on lateral boundaries. The benchmarking against the accurate short‐time step results confirms the accuracy of the new algorithm for the optimal arrangement of short‐ and long‐time steps. The algorithm provides moderate computational acceleration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Simulations of crack growth that are based on the cohesive surface methodology typically involve ill‐conditioned systems of equations and require much processing time. This paper shows how these systems of equations can be solved efficiently by adopting the domain decomposition approach in which the finite element mesh is partitioned into multiple blocks. The system of equations is then reduced to a much smaller system of equations that is solved with an iterative algorithm in combination with a powerful two‐level preconditioner. Although the solution algorithm is more efficient than a direct solution algorithm on a single‐processor computer, it becomes really attractive when used on a parallel computer. This is demonstrated for a large scale simulation of crack growth in a polymer using a Cray T3E with 64 processors. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Most devices based on shape memory alloys experience large rotations and moderate or finite strains. This motivates the development of finite‐strain constitutive models together with the appropriate computational counterparts. To this end, in the present paper a three‐dimensional finite‐strain phenomenological constitutive model is investigated and a robust and efficient integration algorithm is proposed. Properly defining the variables, extensively used regularization schemes are avoided and a nucleation–completion criterion is defined. Moreover, introducing a logarithmic mapping, a new form of time‐discrete equations is proposed. The solution algorithm as well as a suitable initial guess for the resultant nonlinear equations are also deeply discussed. Extensive numerical tests are performed to show robustness as well as efficiency of the proposed integration algorithm. Implementation of the integration algorithm within a user‐defined subroutine UMAT in the commercial nonlinear finite element software ABAQUS/Standard makes also possible the solution of a variety of boundary value problems. The obtained results show the efficiency and robustness of the proposed approach and confirm the improved efficiency (in terms of solution CPU time) when a nucleation–completion criterion is used instead of regularization schemes, as well as when a logarithmic mapping is used for the time‐discrete evolution equation instead of an exponential mapping. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
建筑表面风压的三维数值模拟   总被引:9,自引:0,他引:9  
本文采用数值模拟方法预测由近地三维流动风引起的建筑物的表面风压。文中运用一种扩展的k-ε紊流封闭模型,导得了稳态流动风的统一形式的控制微分方程。采用控制容积法对微分方程作了离散,SIMPLEC压力校正迭代算法实现了非线性离散化方程的求解。实例计算与分析比较表明,本文的模拟方法改善了对建筑物侧风面和顶面风压值的预测  相似文献   

12.
This paper presents two techniques, i.e. the proper orthogonal decomposition (POD) and the stochastic collocation method (SCM), for constructing surrogate models to accelerate the Bayesian inference approach for parameter estimation problems associated with partial differential equations. POD is a model reduction technique that derives reduced‐order models using an optimal problem‐adapted basis to effect significant reduction of the problem size and hence computational cost. SCM is an uncertainty propagation technique that approximates the parameterized solution and reduces further forward solves to function evaluations. The utility of the techniques is assessed on the non‐linear inverse problem of probabilistically calibrating scalar Robin coefficients from boundary measurements arising in the quenching process and non‐destructive evaluation. A hierarchical Bayesian model that handles flexibly the regularization parameter and the noise level is employed, and the posterior state space is explored by the Markov chain Monte Carlo. The numerical results indicate that significant computational gains can be realized without sacrificing the accuracy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the formulation of numerical algorithms for the solution of the closest‐point projection equations that appear in typical implementations of return mapping algorithms in elastoplasticity. The main motivation behind this work is to avoid the poor global convergence properties of a straight application of a Newton scheme in the solution of these equations, the so‐called Newton‐CPPM. The mathematical structure behind the closest‐point projection equations identified in Part I of this work delineates clearly different strategies for the successful solution of these equations. In particular, primal and dual closest‐point projection algorithms are proposed, in non‐augmented and augmented Lagrangian versions for the imposition of the consistency condition. The primal algorithms involve a direct solution of the original closest‐point projection equations, whereas the dual schemes involve a two‐level structure by which the original system of equations is staggered, with the imposition of the consistency condition driving alone the iterative process. Newton schemes in combination with appropriate line search strategies are considered, resulting in the desired asymptotically quadratic local rate of convergence and the sought global convergence character of the iterative schemes. These properties, together with the computational performance of the different schemes, are evaluated through representative numerical examples involving different models of finite‐strain plasticity. In particular, the avoidance of the large regions of no convergence in the trial state observed in the standard Newton‐CPPM is clearly illustrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A method of reducing the number of degrees of freedom and the overall computing times in finite element method (FEM) has been devised. The technique is valid for linear problems and arbitrary temporal variation of boundary conditions. At the first stage of the method standard FEM time stepping procedure is invoked. The temperature fields obtained for the first few time steps undergo statistical analysis yielding an optimal set of globally defined trial and weighting functions for the Galerkin solution of the problem at hand. Simple matrix manipulations applied to the original FEM system produce a set of ordinary differential equations of a dimensionality greatly reduced when compared with the original FEM formulation. Using the concept of modal analysis the set is then solved analytically. Treatment of non‐homogeneous initial conditions, time‐dependent boundary conditions and controlling the error introduced by the reduction of the degrees of freedom are discussed. Several numerical examples are included for validation of the approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
An efficient strategy for the solution of N‐S Equations using collocated, non‐orthogonal grids is presented. The governing equations have been discretized in the physical plane itself without co‐ordinate transformation, thereby retaining the lucidity of the basic finite volume method. The non‐orthogonal terms and QUICK type corrections for the convective terms in the momentum equations are treated explicitly, while the other terms are taken in implicit form. In the pressure correction equation, the non‐orthogonal terms have been dropped altogether. The discretized equations have been solved by the preconditioned conjugate gradient square method. The specific combination of above steps has resulted in better convergence properties as compared to those of existing algorithms, even for highly skewed grids. The scheme has been validated against benchmark solutions such as lid‐driven flow in square and skewed cavities and experi mental results of flow over a single cylinder. Its applicability has also been illustrated for flow through a bank of staggered cylinders, with anti‐symmetric inlet and outlet boundary conditions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical method is presented for the dynamic analysis of vehicles moving on flexible structures which contain gaps. The Lagrange multipliers associated with the kinematic constraints of the vehicle components and the contact forces between the rigid wheels of the vehicle and the flexible structures are simultaneously computed with the solutions of the equations of motion by using the iterative schemes. On the kinematic joints and on the possible contact points the velocity and acceleration constraints as well as the displacement constraints are satisfied by the monotone reductions of the corresponding error vectors. And a well-developed simple one-step time integration of ordinary differential equation is employed for the solution of the equations of motion. Convergences of the iterative schemes are analysed and numerical simulations are conducted. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
The governing equations for the interaction of two immiscible fluids within a deforming porous medium are formulated on the basis of generalized Biot theory. The displacement of the solid skeleton, the pressure and saturation of wetting fluid are taken as primary unknowns of the model. The finite element method is applied to discretize the governing eqations in space. The time domain numerical solution to the coupled problem is achieved by using an unconditionally stable direct integration procedure. Examples are presented to illustrate the performance and capability of the approach.  相似文献   

18.
Numerical solution of ill‐posed boundary value problems normally requires iterative procedures. In a typical solution, the ill‐posed problem is first converted to a well‐posed one by assuming the missing boundary values. The new problem is solved by a conventional numerical technique and the solution is checked against the unused data. The problem is solved iteratively using optimization schemes until convergence is achieved. The present paper offers a different procedure. Using the radial basis function collocation method, we demonstrate that the solution of certain ill‐posed problems can be accomplished without iteration. This method not only is efficient and accurate, but also circumvents the stability problem that can exist in the iterative method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The use of spectral stochastic finite element models results in large systems of equations requiring specialized solution strategies. This paper discusses three different numerical algorithms for solving these large systems of equations. It presents a trade‐off of these algorithms in terms of memory usage and computation time. It also shows that the structure of the spectral stochastic stiffness matrix can be exploited to accelerate the solution process, while keeping the memory usage to a minimum. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A new partitioned solution procedure for the direct time integration of second order coupled-field systems is presented and it is applied to the problem of soil–pore fluid interaction. The necessary convergence analysis for the iterative method is carried out and the fulfilment of the convergence condition is achieved with the introduction of two suitable auxiliary matrices in the basic equations governing the dynamic phenomena. Numerical examples are presented to demonstrate the effectiveness and the versatility of the proposed solution procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号