首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bilateral filtering for structural topology optimization   总被引:1,自引:0,他引:1  
Filtering has been a major approach used in the homogenization‐based methods for structural topology optimization to suppress the checkerboard pattern and relieve the numerical instabilities. In this paper a bilateral filtering technique originally developed in image processing is presented as an efficient approach to regularizing the topology optimization problem. A non‐linear bilateral filtering process leads to a suitable problem regularization to eliminate the checkerboard instability, pronounced edge preserving smoothing characteristics to favour the 0–1 convergence of the mass distribution, and computational efficiency due to its single pass and non‐iterative nature. Thus, we show that the application of the bilateral filtering brings more desirable effects of checkerboard‐free, mesh independence, crisp boundary, computational efficiency and conceptual simplicity. The proposed bilateral technique has a close relationship with the conventional domain filtering and range filtering. The proposed method is implemented in the framework of a power‐law approach based on the optimality criteria and illustrated with 2D examples of minimum compliance design that has been extensively studied in the recent literature of topology optimization and its efficiency and accuracy are highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Recently, numerous modified versions of immune algorithms (IAs) have been adopted in both theoretical and practical applications. However, few have been proposed for solving structural topology optimization problems. In addition, the design connectivity handling and one‐node connected hinge prevention, which are vital in the application of population‐based methods with binary representation for structural topology optimization, have not been applied to IAs in the literature. A stress‐enhanced clonal selection algorithm (SECSA) incorporating an IA with a dominance‐based constraint‐handling technique and a new stress‐enhanced hypermutation operator is proposed to rectify those deficiencies. To demonstrate the high viability of the presented method, comparisons between the presented SECSA and genetic algorithm‐based methods were made on minimum compliance and minimum weight benchmark structural topology design problems in two‐dimensional, three‐dimensional, and multiloading cases. In each case, SECSA was shown to be competitive in terms of convergence speed and solution quality. The main goal of this study is not only to further explore the capabilities of IAs, but also to show that an IA with appropriate enhancements can lead to the development of attractive computational tools for global search in structural topology optimization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we propose an approach for reliability‐based design optimization where a structure of minimum weight subject to reliability constraints on the effective stresses is sought. The reliability‐based topology optimization problem is formulated by using the performance measure approach, and the sequential optimization and reliability assessment method is employed. This strategy allows for decoupling the reliability‐based topology optimization problem into 2 steps, namely, deterministic topology optimization and reliability analysis. In particular, the deterministic structural optimization problem subject to stress constraints is addressed with an efficient methodology based on the topological derivative concept together with a level‐set domain representation method. The resulting algorithm is applied to some benchmark problems, showing the effectiveness of the proposed approach.  相似文献   

4.
A topology design approach provides freedom to design a structure of any size, shape and connectivity within a defined domain. The binary chromosome storage and global search capabilities of the Genetic Algorithm (GA) make it an excellent tool for structural topology applications. A companion paper (Fanjoy, D. W. and Crossley, W. A. (2000), Topology design of planar cross-sections with a genetic algorithm: Part1--overcoming the obstacles. Engineering Optimization, (this issue)) investigated and demonstrated a successful GA approach for topology design of planar cross-sections subject to bending, torsion and combined loading. In this paper, the structural topology design applications are investigated in greater detail. The finite element method used for section analysis is described. Several applications are presented, highlighting different features of the GA/finite-element method combination for topology design. Designs generated for simple bending and torsion problems are presented first, with discussion and comparison to theoretical or known solutions. A combined loading application is presented, and the generated solution is compared to a baseline design. Finally, a multiobjective problem demonstrates the ability of the GA to generate a family of design trade-off solutions; a capability not normally associated with topology design approaches. The GA method for topology design presented here shows promise for application to a wider range of structural design problems than previous GA approaches.  相似文献   

5.
We study the simultaneous analysis and design (SAND) formulation of the ‘classical’ topology optimization problem subject to linear constraints on material density variables. Based on a dual method in theory, and a primal‐dual method in practice, we propose a separable and strictly convex quadratic Lagrange–Newton subproblem for use in sequential approximate optimization of the SAND‐formulated classical topology design problem. The SAND problem is characterized by a large number of nonlinear equality constraints (the equations of equilibrium) that are linearized in the approximate convex subproblems. The availability of cheap second‐order information is exploited in a Lagrange–Newton sequential quadratic programming‐like framework. In the spirit of efficient structural optimization methods, the quadratic terms are restricted to the diagonal of the Hessian matrix; the subproblems have minimal storage requirements, are easy to solve, and positive definiteness of the diagonal Hessian matrix is trivially enforced. Theoretical considerations reveal that the dual statement of the proposed subproblem for SAND minimum compliance design agrees with the ever‐popular optimality criterion method – which is a nested analysis and design formulation. This relates, in turn, to the known equivalence between rudimentary dual sequential approximate optimization algorithms based on reciprocal (and exponential) intervening variables and the optimality criterion method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A formulation for design of continuous, hinge‐free compliant mechanisms is developed and examined within a continuum structural topology optimization framework. The formulation makes use of two distinctly different sets of springs, the first of which are artificial springs of relatively large stiffness attached to the input and output ports of the mechanism model, and the second of which are springs attached only to the output port with smaller stiffnesses that represent the resistance of the workpiece as it is manipulated by the mechanism. The proposed formulation involves solving two nested optimization problems. In the inner problem the arrangement of a constrained amount of structural material is optimized to maximize the mechanism's mutual potential energy in response to a force loading at the input port while working against the stiff artificial springs on the input and output ports. As the relative stiffness of the artificial springs increases, the material continuity of the mechanism also increases to the point where de facto ‘hinge’ regions are eliminated. In the outer problem, the artificial springs are removed and one solves for an appropriate amount of structural material that yields the desired finite deformation compliance characteristics of the mechanism when working against the real workpiece resistance. Different aspects of the proposed formulation are demonstrated on a number of examples and discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The objective of the present study is to show that the numerical instability characterized by checkerboard patterns can be completely controlled when non‐conforming four‐node finite elements are employed. Since the convergence of the non‐conforming finite element is independent of the Lamé parameters, the stiffness of the non‐conforming element exhibits correct limiting behaviour, which is desirable in prohibiting the unwanted formation of checkerboards in topology optimization. We employ the homogenization method to show the checkerboard‐free property of the non‐conforming element in topology optimization problems and verify it with three typical optimization examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Level set topology optimization of fluids in Stokes flow   总被引:1,自引:0,他引:1  
We propose the level set method of topology optimization as a viable, robust and efficient alternative to density‐based approaches in the setting of fluid flow. The proposed algorithm maintains the discrete nature of the optimization problem throughout the optimization process, leading to significant advantages over density‐based topology optimization algorithms. Specifically, the no‐slip boundary condition is implemented directly—this is accurate, removes the need for interpolation schemes and continuation methods, and gives significant computational savings by only requiring flow to be modeled in fluid regions. Topological sensitivity information is utilized to give a robust algorithm in two dimensions and familiar two‐dimensional power dissipation minimization problems are solved successfully. Computational efficiency of the algorithm is also clearly demonstrated on large‐scale three‐dimensional problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
针对稳态热传导问题,以结构散热弱度最小为目标,建立了连续体传热结构的拓扑优化模型和方法,给出了相应的算例。优化方法中分别建立了设计相关载荷和非相关载荷的灵敏度列式,采用Rational Approximation of Material Properties (RAMP)方法对材料密度进行惩罚,利用优化准则法控制设计目标与材料分布,以敏度过滤技术抑制棋盘格效应。算例的结果直观显示了设计相关载荷和非设计相关载荷以及复合载荷对结构拓扑构型的影响规律,表明了该文考虑设计相关载荷的稳态热传导结构拓扑优化方法的合理性。  相似文献   

12.
Instead of using expensive multiprocessor supercomputers, parallel computing can be implemented on a cluster of inexpensive personal computers. Commercial accesses to high performance parallel computing are also available on the pay-per-use basis. However, literature on the use of parallel computing in production research is limited. In this paper, we present a dynamic cell formation problem in manufacturing systems solved by a parallel genetic algorithm approach. This method improves our previous work on the use of sequential genetic algorithm (GA). Six parallel GAs for the dynamic cell formation problem were developed and tested. The parallel GAs are all based on the island model using migration of individuals but are different in their connection topologies. The performance of the parallel GA approach was evaluated against a sequential GA as well as the off-shelf optimization software. The results are very encouraging. The considered dynamic manufacturing cell formation problem incorporates several design factors. They include dynamic cell configuration, alternative routings, sequence of operations, multiple units of identical machines, machine capacity, workload balancing, production cost and other practical constraints.  相似文献   

13.
We present a density‐based topology optimization approach for the design of metallic microwave insert filters. A two‐phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share little resemblance to standard filter layouts, and hence, the proposed design method offers a new design tool in microwave engineering. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we propose a checkerboard‐free topology optimization method without introducing any additional constraint parameter. This aim is accomplished by the introduction of finite element approximation for continuous material distribution in a fixed design domain. That is, the continuous distribution of microstructures, or equivalently design variables, is realized in the whole design domain in the context of the homogenization design method (HDM), by the discretization with finite element interpolations. By virtue of this continuous FE approximation of design variables, discontinuous distribution like checkerboard patterns disappear without any filtering schemes. We call this proposed method the method of continuous approximation of material distribution (CAMD) to emphasize the continuity imposed on the ‘material field’. Two representative numerical examples are presented to demonstrate the capability and the efficiency of the proposed approach against some classes of numerical instabilities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In this article size/topology optimization of trusses is performed using a genetic algorithm (GA), the force method and some concepts of graph theory. One of the main difficulties with optimization with a GA is that the parameters involved are not completely known and the number of operations needed is often quite high. Application of some concepts of the force method, together with theory of graphs, make the generation of a suitable initial population well‐matched with critical paths for the transformation of internal forces feasible. In the process of optimization generated topologically unstable trusses are identified without any matrix manipulation and highly penalized. Identifying a suitable range for the cross‐section of each member for the ground structure in the list of profiles, the length of the substrings representing the cross‐sectional design variables are reduced. Using a contraction algorithm, the length of the strings is further reduced and a GA is performed in a smaller domain of design space. The above process is accompanied by efficient methods for selection, and by using a suitable penalty function in order to reduce the number of numerical operations and to increase the speed of the optimization toward a global optimum. The efficiency of the present method is illustrated using some examples, and compared to those of previous studies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This work is focused on the topology optimization of lightweight structures consisting of multiphase materials. Instead of adopting the common idea of using volume constraint, a new problem formulation with mass constraint is proposed. Meanwhile, recursive multiphase materials interpolation (RMMI) and uniform multiphase materials interpolation (UMMI) schemes are discussed and compared based on numerical tests and theoretical analysis. It is indicated that the nonlinearity of the mass constraint introduced by RMMI brings numerical difficulties to attain the global optimum of the optimization problem. On the contrary, the UMMI‐2 scheme makes it possible to formulate the mass constraint in a linear form with separable design variables. One such formulation favors very much the problem resolution by means of mathematical programming approaches, especially the convex programming methods. Moreover, numerical analysis indicates that fully uniform initial weighting is beneficial to seek the global optimum when UMMI‐2 scheme is used. Besides, the relationship between the volume constraint and mass constraint is theoretically revealed. The filtering technique is adapted to avoid the checkerboard pattern related to the problem with multiphase materials. Numerical examples show that the UMMI‐2 scheme with fully uniform initial weighting is reliable and efficient to deal with the structural topology optimization with multiphase materials and mass constraint. Meanwhile, the mass constraint formulation is evidently more significant than the volume constraint formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

This paper combines previously developed techniques for image‐preprocessing and characteristic image‐interpreting together with a newly proposed automated shape‐optimization modeling technique into an integrated topology‐optimization and shape‐optimization system. As a result, structure designers are provided with an efficient and reliable automated structural optimization system (ASOS). The automated shape‐optimization modeling technique, the key technique in ASOS, uses hole‐expanding strategy, interference analysis, and hole shape‐adjusting strategy to automatically define the design variables and side constraints needed for shape optimization. This technique not only eliminates the need to manually define design variables and side constraints for shape optimization, but during the process of shape optimization also prevents interference between the interior holes and the exterior boundary. The ASOS is tested in three different structural configuration design examples.  相似文献   

18.
Genetic algorithms (GAs) have been used in many disciplines to optimize solutions for a broad range of problems. In the last 20 years, the statistical literature has seen an increase in the use and study of this optimization algorithm for generating optimal designs in a diverse set of experimental settings. These efforts are due in part to an interest in implementing a novel methodology as well as the hope that careful application of elements of the GA framework to the unique aspects of a designed experiment problem might lead to an efficient means of finding improved or optimal designs. In this paper, we explore the merits of using this approach, some of the aspects of design that make it a unique application relative to other optimization scenarios, and discuss elements which should be considered for an effective implementation. We conclude that the current GA implementations can, but do not always, provide a competitive methodology to produce substantial gains over standard optimal design strategies. We consider both the probability of finding a globally optimal design as well as the computational efficiency of this approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents the direct application of topology optimization to the design of shape memory alloy (SMA) thermal actuators. Because SMAs exhibit strongly nonlinear, temperature‐dependent material behavior, designing effective multidimensional SMA actuator structures is a challenging task. We pursue the use of topology optimization to address this problem. Conventional material scaling topology optimization approaches are hampered by the complexity of the SMA constitutive behavior combined with large actuator deflections. Therefore, for topology optimization we employ the element connectivity parameterization approach, which offers improved analysis convergence and robustness, as well as an unambiguous treatment of nonlinear materials. A path‐independent SMA constitutive model, aimed particularly at the NiTi R‐phase transformation, is employed, allowing efficient adjoint sensitivity analysis. The effectiveness of the proposed SMA topology optimization is demonstrated by numerical examples of constrained and unconstrained formulations of actuator stroke maximization, which provide insight into the characteristics of optimal SMA actuators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A search procedure with a philosophical basis in molecular biology is adapted for solving single and multiobjective structural optimization problems. This procedure, known as a genetic algorithm (GA). utilizes a blending of the principles of natural genetics and natural selection. A lack of dependence on the gradient information makes GAs less susceptible to pitfalls of convergence to a local optimum. To model the multiple objective functions in the problem formulation, a co-operative game theoretic approach is proposed. Examples dealing with single and multiobjective geometrical design of structures with discrete–continuous design variables, and using artificial genetic search are presented. Simulation results indicate that GAs converge to optimum solutions by searching only a small fraction of the solution space. The optimum solutions obtained using GAs compare favourably with optimum solutions obtained using gradient-based search techniques. The results indicate that the efficiency and power of GAs can be effectively utilized to solve a broad spectrum of design optimization problems with discrete and continuous variables with similar efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号