首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A test rig for simultaneous testing of up to 88 compression springs under constant as well as variable amplitude loading is presented in this paper. The test rig utilizes a servo‐hydraulic testing machine. The results of long‐term fatigue tests of compression springs under constant and variable amplitude loading up to 5 ? 108 and 1.4 ? 107 cycles are presented. Experimental Woehler‐ and Gassner‐curves are obtained using the maximum likelihood method. Theoretical Gassner‐curves are generated using Miner's rule and experimental Woehler‐curves. The theoretical Gassner‐curves are compared to the experimental ones. The results of the constant amplitude loading tests are compared to literature data. The possibility to increase the testing frequency in variable amplitude loading tests is discussed. Thereto, the comparability of results from fatigue tests of material specimens using torsional ultrasonic fatigue testing equipment to results from fatigue tests on compression springs is addressed.  相似文献   

2.
A new calculation approach is suggested to the fatigue life evaluation of notched specimens under multiaxial variable amplitude loading. Within this suggested approach, if the computed uniaxial fatigue damage by the pure torsional loading path is larger than that by the axial tension–compression loading path, a shear strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage; otherwise, an axial strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage. Furthermore, the presented method employs shear strain‐based and axial strain‐based multiaxial fatigue damage parameters in substitution of equivalent strain amplitude to consider the influence of nonproportional additional hardening. The experimental data of GH4169 superalloy and 7050‐T7451 aluminium alloy notched components are used to illustrate the presented multiaxial fatigue lifetime estimation approach for notched components, and the results reveal that estimations are accurate.  相似文献   

3.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

4.
The series version of the M346 military trainer aircraft is currently under construction at Aermacchi (Venegono Superiore, Italy). The design target life of the aircraft, which will be certified for Damage Tolerance, is 12 000 flight hours (FH), with the possible extension to 16 000 FH after specific inspections. Fatigue tests were performed on critical elements at the Department of Aerospace Engineering at University of Pisa in order to verify crack propagation calculations. The wing to fuselage connection is one of the most interesting elements from the fatigue point of view. Spars and frames, both integrally machined, are connected by two lug‐fork joints; the base material is aluminium alloy 7050‐T7451 for both the elements. High interference bushings, ForceMate®, produced by FTI (Fatigue Technology Inc., Seattle, WA) were used in the lug/fork connections. Experimental activity was carried out on two different specimens. The first, a Compact Tension specimen, was tested under constant amplitude loading to verify the fatigue crack growth rate data contained in NASGRO 4, the software used for Damage Tolerance evaluations. Experimental results were fully comparable with the NASGRO 4 material database. Additional variable amplitude loading tests were carried out in order to calibrate crack growth prediction models used in the analyses. The second specimen was a lug‐fork joint designed as the actual joints present on the aircraft. Both constant and variable amplitude loading fatigue tests were carried out in this case too. Results obtained clearly indicated the beneficial effect of ForceMate bushings, compared to shrink fit bushings.  相似文献   

5.
The structural durability of safety components in the chassis comprises not only the fatigue behaviour under cyclic variable amplitude service loading, but also its interaction with prestrains caused by special events and the rupture behaviour under impact loading due to misuse . From this background, the structural durability behaviour of Panhard rods made from ferritic cast nodular iron EN‐GJS‐400–15 was compared with the behaviour of rods made from the austempered EN‐GJS‐800–8. The components investigated, Panhard rods and cast plugs, made from the austempered material revealed a higher impact resistance than the components made from the ferritic cast nodular iron. Due to their ausferrite microstructure, Panhard rods made from EN‐GJS‐800–8 display a significantly superior fatigue strength behaviour, especially under spectrum loading, and offer a potential for lightweight design. Prestrains do not affect the fatigue behaviour under variable amplitude loading and the plastic deformation of the component under impact loading can be increased by appropriate design reducing the stiffness in the shaft area and achieving a weight reduction by 15 %.  相似文献   

6.
The fatigue limit diagram provides the critical condition of non‐failure against fatigue under constant amplitude loading. The fatigue limit diagram is usually considered to give the allowable stress if every stress component is kept within the fatigue limit diagram. In the case of variable amplitude fretting fatigue, however, this study showed that fatigue failure could occur even when all stresses were within the fatigue limit diagram. An example of such a condition is a repeated two‐step loading such as when the first step stress is R=?1 and the second step stress has a high mean value. The reason why such a phenomenon occurs was investigated. A non‐propagating crack was formed by the first step stress even when well below the fatigue limit. The resultant non‐propagating crack functioned as a pre‐crack for the second step stress with a high mean value. Consequently, fatigue failure occurred even when every stress was within the fatigue limit diagram of constant amplitude loading. The fatigue limit diagram obtained in constant amplitude fatigue test does not necessarily guarantee safety in the case of variable amplitude loading in fretting fatigue.  相似文献   

7.
Fatigue tests under variable amplitude multiaxial loading were conducted on titanium alloy TC4 tubular specimens. A method to estimate the fatigue life under variable amplitude multiaxial loading has been proposed. Multiaxial fatigue parameter based on Wu–Hu–Song approach and rainflow cycle counting and Miner–Palmgren rule were applied in this method. The capability of fatigue life prediction for the proposed method was checked against the test data of TC4 alloy under variable amplitude multiaxial loading. The prediction results are all within a factor of two scatter band of the test results.  相似文献   

8.
Based on Wang and Brown's reversal counting method, a new approach to the determination of the critical plane is proposed by the defined plane with a weight‐averaged maximum shear strain range under multiaxial variable amplitude loading. According to the determined critical plane, a detailed procedure of multiaxial fatigue life prediction is introduced to predict lives in the low‐cycle multiaxial fatigue regime. The proposed approach is verified by two multiaxial fatigue damage models and Miner's linear cumulative damage law. The results showed that the proposed approach can effectively predict the orientation of the failure plane under multiaxial variable amplitude loading and give a satisfactory life prediction.  相似文献   

9.
The present paper is concerned with the use of the modified Wöhler curve method (MWCM) to estimate both lifetime and high‐cycle fatigue strength of plain engineering materials subjected to complex load histories resulting, at critical locations, in variable amplitude (VA) multiaxial stress states. In more detail, when employed to address the constant amplitude (CA) problem, the MWCM postulates that fatigue damage reaches its maximum value on that material plane (i.e. the so‐called critical plane) experiencing the maximum shear stress amplitude, fatigue strength depending on the ratio between the normal and shear stress components relative to the critical plane itself. To extend the use of the above criterion to those situations involving VA loadings, the MWCM is suggested here as being applied by defining the critical plane through that direction experiencing the maximum variance of the resolved shear stress. Such a direction is used also to perform the cycle counting: because the resolved shear stress is a monodimensional quantity, stress cycles are directly counted by the classical rain‐flow method. The degree of multiaxiality and non‐proportionality of the time‐variable stress state at the assumed critical sites instead is suggested as being measured through a suitable stress ratio which accounts for the mean value and the variance of the stress perpendicular to the critical plane as well as for the variance of the shear stress resolved along the direction experiencing the maximum variance of the resolved shear stress. Accuracy and reliability of the proposed approach was checked by using several experimental results taken from the literature. The performed validation exercise seems to strongly support the idea that the approach formalized in the present paper is a powerful engineering tool suitable for estimating fatigue damage under VA multiaxial fatigue loading, and this holds true not only in the medium‐cycle, but also in the high‐cycle fatigue regime.  相似文献   

10.
In this paper, a concept of fatigue driving energy is formulated to describe the process of fatigue failure. The parameter is taken as a combination of the fatigue driving stress and strain energy density. By assessing the change of this parameter, a new non‐linear damage model is proposed for residual life estimation within high‐cycle fatigue regime under variable amplitude loading. In order to consider the effects of loading histories on damage accumulation under such condition, the load interaction effects are incorporated into the new model, and a modified version is thus developed. Life predictions by these two models and Miner rule are compared using experimental data from literature. The results show that the proposed model gives lower deviations than the Miner rule, while the modified model shows better prediction performances than the others. Moreover, the proposed model and its modifications are ease of implementation with the use of S–N curve.  相似文献   

11.
This paper presents a probabilistic fatigue crack growth life prediction methodology for spot‐welded joints under variable amplitude loading history. The loading is multi‐axial and is obtained from transient response analysis of a vehicle model using finite‐element analysis. A three‐dimensional (3D) finite element model of a simplified joint with four spot welds is developed, and the static stress analysis of this joint is performed. Then the fatigue crack inside the base material sheet is modelled as a surface crack. Probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction methodology for spot welds. This new method is implemented with MSC/NASTRAN and MSC/FATIGUE and is useful for the reliability assessment of spot‐welded joints against fatigue crack growth.  相似文献   

12.
In the present paper, the fatigue lifetime of metallic structural components subjected to variable amplitude loading is evaluated by applying 2 different multiaxial high‐cycle fatigue criteria. Such criteria, proposed by some of the present authors, are based on the critical plane approach and aim at reducing a given multiaxial stress state to an equivalent uniaxial stress condition. In particular, the procedure employed by both criteria consists of the following 3 steps: (1) definition of the critical plane; (2) counting of loading cycles; and (3) estimation of fatigue damage. Finally, the previous criteria are validated by comparing the theoretical results with experimental data related to smooth metallic specimens subjected to uniaxial and multiaxial variable amplitude loading.  相似文献   

13.
In the present work, a simple fatigue life prediction approach is proposed using fracture mechanics for laser beam welded Al‐alloy joints under variable amplitude loading. In the proposed approach, variable amplitude loading sequence is transformed into an equivalent constant amplitude loading using the root mean square model. The crack growth driving force K* is chosen to describe the fatigue crack growth rate. The influences of residual stress and its relaxation on fatigue life are taken into account in the proposed approach. The fatigue lives are also predicted using the traditional approach based on the S‐N curves and the rainflow counting method. The predicted results show that the proposed approach is better than the traditional approach.  相似文献   

14.
This paper discusses eight methods for presenting fatigue test results for variable amplitude loading and their comparison with constant amplitude loading. While the maximum amplitude method compares constant and variable amplitude loading results by the Woehler and Gassner curves, all other seven methods try to transform the variable amplitude results into the Woehler curve by applying different equations. The advantage of the maximum amplitude method is the direct comparison of the maximum amplitude of the spectrum with the yield strength and with the high‐cycle fatigue strength, which is an important step in structural design. Among the other methods, the best results were obtained by following: most damaging, half damage and mean damage amplitudes. However, the presentation of constant and variable amplitude results by these methods in one scatter band is possible only when the real damage sum is close to D = 1.0.  相似文献   

15.
The fatigue strength of welded joints can be improved with various post‐weld treatment methods. High‐frequency mechanical impact treatment is a residual stress modification technique that creates compressive residual stresses at the weld toe. However, these beneficial residual stresses may relax under certain loading conditions. In this paper, previously published fatigue data for butt and fillet welded joints subjected to high stress ratios and variable amplitude cyclic stresses were evaluated in relation to the current International Institute of Welding (IIW) recommendations on fatigue strength improvement and a proposed IIW design guideline for high‐frequency mechanical impact‐treated welded joints. The evaluation showed that the current IIW recommendations resulted in both non‐conservative and overly conservative fatigue strength estimations depending on the applied stress level, whereas the proposed fatigue assessment guideline fitted the current data well.  相似文献   

16.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

17.
Most fatigue loaded components or structures experience a variety of stress histories under typical operating loading conditions. In the case of constant amplitude loading the fatigue crack growth depends only on the component geometry, applied loading and material properties. In the case of variable amplitude loading the fatigue crack growth depends also on the preceding cyclic loading history. Various load sequences may induce different load-interaction effects which can cause either acceleration or deceleration of fatigue crack growth. The recently modified two-parameter fatigue crack growth model based on the local stress–strain material behaviour at the crack tip [1,2] was used to account for the variable amplitude loading effects. The experimental verification of the proposed model was performed using 7075-T6 aluminum alloy, Ti-17 titanium alloy, and 350WT steel. The good agreement between theoretical and experimental data shows the ability of the model to predict the fatigue life under different types of variable amplitude loading spectra.  相似文献   

18.
Although the fatigue limit diagram is defined in principle for constant stress amplitude, it is often considered that fatigue failure would not occur, even in varying loading, if applied stresses were kept within the fatigue limit diagram. However, it was shown in the case of small‐notched specimens that fatigue failure occurred in some special cases of variable amplitude loading, even when all stress amplitudes were kept within the fatigue limit diagram. The cause of this phenomenon was examined using two‐step stress and repeated two‐step stress patterns in which the first step stress was chosen to be equal to the fatigue limit with zero mean stress and a mean stress was superposed on the second step stress. A non‐propagating crack was formed by the first step stress. This crack functioned as a pre‐crack for the second step stress with high mean stress. Consequently, fatigue failure occurred even when all stress amplitudes were kept within the fatigue limit diagram. It was an unexpected fracture caused by the interference effect of a non‐propagating crack and a mean stress change.  相似文献   

19.
An innovative approach for predicting the reliability of a structure that is subject to a variable‐amplitude dynamic load is presented. In this approach, a Gassner durability curve with its scatter is modelled using a 2‐parametric Weibull's probability density function (PDF). The trend of the Gassner durability curve is modelled with a general hyperbola equation in a log‐log scale. The hyperbola equation is applied to represent the durability curve for the 63.2% probability of fatigue failure that describes the dependency of the Weibull's scale parameter on the loading spectrum's maximum stress. Equations are derived to link the parameters of the hyperbola curve to the material's S‐N curve and the loading spectrum. The Weibull's shape parameter is estimated from the scatter of the material's S‐N curve. The proposed Gassner‐curve model is applied to calculate the fatigue reliability from the PDF of the loading spectrum's maximum stress and the PDF of the durability‐curve's amplitude stress for the selected number of loading‐cycles‐to‐failure.  相似文献   

20.
Contribution of low load cycles to fatigue damage in 0.15 %C steel The S‐N curve of 0.15 %C steel shows an endurance limit. Two‐step variable amplitude loading experiments serve to investigate the influence of numerous cycles below the endurance limit on fatigue damage. If high stress amplitudes of the loading sequences are more than approx. 15 % above the endurance limit, low load cycles contribute significantly to fatigue damage. Investigations of fatigue crack propagation under two‐step variable amplitude loading show accelerated crack growth caused by low load cycles. If high stress amplitudes of the two‐step sequences are less than 15 % above the endurance limit, beneficial influences of numerous low load cycles are found. Under these conditions, the material can sustain far greater numbers of load cycles than predicted by Miner damage accumulation calculation. Fatigue crack growth studies show that under these conditions for the high load numerous low load cycles lead to stop of the crack propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号