首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: To improve the interfacial interaction in MMT‐SBR nanocomposites, one type of UOAC was introduced to in‐situ modified MMT before latex compounding with SBR. The influence of the UOAC/MMT ratio on the structure and properties of MMT/SBR nanocomposites were carefully studied by XRD, TEM, and mechanical testing. It was found that through the in‐situ organic modification, a rubber‐intercalated structure of MMT was obtained in the nanocomposites, and the amount of rubber‐intercalated structure strongly depended on the UOAC/MMT ratio. The tensile strength of MMT‐SBR nanocomposites was enhanced dramatically from 4 to 18 MPa by in‐situ organic modification of MMT.

Stress‐strain diagram of SBR/clay nanocomposites.  相似文献   


2.
Summary: A novel rigid PVC ternary nanocomposite containing NBR‐ENP and untreated Na‐MMT has been fabricated. X‐ray diffraction XRD, TEM and SEM observations revealed that the untreated Na‐MMT was exfoliated and most NBR‐ENPs (about 90 nm) were separately dispersed in the PVC matrix. DMTA and TGA demonstrated that the PVC ternary nanocomposites had a higher glass transition temperature and a higher decomposition temperature than neat PVC, while the toughness increased simultaneously. Combustion tests showed that the exfoliated clay in the PVC/NBR‐ENP/MMT ternary nanocomposites did not improve the flame retardancy after ignition under strong heat flux.

Schematic diagram of the fabrication procedure of PVC/NBR‐ENP/Na‐MMT ternary nanocomposites.  相似文献   


3.
A facile and easily industrialized approach for preparing highly dispersed MMT/polymer nanocomposites is developed by combining the latex compounding method and a spray‐drying process. Clay particles are successfully delaminated into layers, and layer re‐stacking is effectively prevented. HR‐TEM and XRD results confirm that MMT layers achieve exfoliated or nearly exfoliated dispersion in both MMT/styrene‐butadiene rubber and MMT/PS nanocomposites. Compared with melt‐blended MMT/SBR composites, MMT/SBR nanocomposites prepared by this new strategy exhibit extremely high dynamic modulus.

  相似文献   


4.
A “green” processing method, dual‐melt extrusion, was used to prepare thermoplastic starch/montmorillonite nanocomposites without organic reactions in the solution. XRD demonstrates that sorbitol enlarged the interlayer distance of MMT during the first step. MMT‐sorbitol, formamide and starch were used to obtain TPS/MMT nanocomposites in the second step. XRD and TEM reveal that TPS intercalated the layers of MMT. With increasing MMT content, improvements in thermal stability, tensile strength, Young's modulus and energy break, and a slight decrease of elongation at break, appeared. The effect of water content on the tensile strength and elongation at break was also studied.

  相似文献   


5.
Summary: Novel poly(cyclotriphosphazene‐co‐sulfonyldiphenol) microtubes were successfully prepared via one‐pot synthesis using special templates generated in situ during the polymerization. The templates could be easily removed by dissolution in water. This approach overcame the multi‐step nature of general template methods. The as‐synthesized microtubes were 1–3 µm in width, about 100 µm in length and contained hexagon‐shaped channels. IR and NMR spectroscopies confirmed the covalently crosslinked chemical structure of the polymer tubes, and the tubes are thus mechanically and thermally stable. The polymer microtubes are of interest for use as chemical or biological sensors, controlled release and delivery of drugs, tissue engineering materials, absorbants and many other microscale investigations.

SEM images of triethylamine hydrochloride crystals produced in situ during formation of the tubes (left) and the polymer microtubes (right).  相似文献   


6.
Summary: A novel fast‐swelling porous superabsorbent hydrogel was prepared by grafting acrylic acid onto corn starch through free‐radical polymerization in aqueous solution using N,N′‐methylenebisacrylamide as a crosslinker, ammonium persulfate as an initiator, sodium dodecyl sulfate and p‐octyl poly(ethylene glycol)phenyl ether as pore‐forming agents. The graft polymerization and surface morphology of the porous superabsorbents were characterized by FTIR and SEM. The results indicate that the porous superabsorbents were endowed with higher equilibrium water absorbency and faster swelling rate (they needed only 10 min to reach 90% of their equilibrium water absorbency) compared with the nonporous superabsorbents. The dewatering method employed had a significant influence on the swelling behavior of the superabsorbents and dewatering agents were useful to preserve the pores formed during the polymerization process.

The equilibrium water absorbency in distilled water, for the porous and non‐porous starch‐g‐poly(acrylic acid‐co‐sodium acrylate) superabsorbent hydrogels dried through different procedures.  相似文献   


7.
PSU/MMT nanocomposites are prepared by dispersing MMT nanolayers in a PSU matrix via in situ photoinduced crosslinking polymerization. Intercalated methacrylate‐functionalized MMT and polysulfone dimethacrylate macromonomer are synthesized independently by esterification. In situ photoinduced crosslinking of the intercalated monomer and the PSU macromonomer in the silicate layers leads to nanocomposites that are formed by individually dispersing inorganic silica nanolayers in the polymer matrix. The morphology of the nanocomposites is investigated by XRD and TEM, which suggests the random dispersion of silicate layers in the PSU matrix. TGA results confirm that the thermal stability and char yield of PSU/MMT nanocomposites increases with the increase of clay loading.

  相似文献   


8.
Two novel cationic RAFT agents, PCDBAB and DCTBAB, were anchored onto MMT clay to yield RAFT‐MMT clays. The RAFT‐MMT clays were then dispersed in styrene where thermal self‐initiation polymerization of styrene to give rise to exfoliated PS/clay nanocomposites occurred. The RAFT agents anchored onto the clay layers successfully controlled the polymerization process resulting in controlled molecular masses and narrow polydispersity indices. The nanocomposites prepared showed enhanced thermal stability, which was a function of the clay loading, clay morphology, and slightly on molecular mass.

  相似文献   


9.
A high degree of exfoliation of MMT in NR is achieved by using the so‐called “propping‐open approach” in which a stepwise expansion of the interlayer spacing of MMT takes place. The nanostructure is characterized by WAXD and TEM which indicate different extents of clay dispersion depending on the fatty‐acid chain length. Curing kinetics of different nanocomposites is studied and interestingly low activation energies of the vulcanization process are observed in the case of NR/EMMT nanocomposites. The incorporation of EMMT dramatically affects composite properties whereas DMA indicates significant reduction of tan δ peak height and the tensile strength approximately doubles from 14 to 30 MPa with only 5 phr EMMT.

  相似文献   


10.
Summary: A new technique, ultrasonically initiated in situ emulsion polymerization, was employed to prepare intercalated polystyrene/Na+‐MMT nanocomposites. FTIR, XRD, and TEM results confirm that the hydrophobic PS can easily intercalate into the galleries of hydrophilic montmorillonite via ultrasonically initiated in situ emulsion polymerization, taking advantages of the multi‐effects of ultrasonic irradiation, such as dispersion, pulverization, activation, and initiation. Properly reducing SDS concentration is beneficial to widen the d‐spacing between clay layers. However, the Na+‐MMT amount has little effect on the d‐spacing of nanocomposites. The glass transition temperature of nanocomposites increased as the percentage of clay increased, although the average molecular weight of PS decreased, and the decomposition temperature of the 1obtained nanocomposites moves to higher temperature.

TEM of PS/Na+‐MMT nanocomposite prepared by ultrasonically initiated in situ emulsion polymerization.  相似文献   


11.
This paper investigates the effect of both the clay loading and the monomer feed rate on the morphology and properties of poly(styrene‐co‐butyl acrylate)‐clay nanocomposites prepared in emulsion polymerization. Analysis by X‐ray diffraction (XRD) and transmission electron microscopy (TEM) of the nanocomposites prepared by batch polymerization showed that the polymer clay nanocomposites (PCNs) with 1–3 wt.‐% clay loading resulted in intercalated structures, while exfoliated structures were obtained at 10 wt.‐% clay loading. The polymerization was also carried out with semi‐batch polymerization. The morphology, thermal stability, and mechanical properties of nanocomposites obtained were found to be more strongly dependent on the clay/polymer ratio than the monomer feed rate.

  相似文献   


12.
Summary: The perfluorinated copolymer poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) was electron beam irradiated under vacuum at various temperatures ranging from room temperature to a temperature above the melting temperature of FEP. Changes of the chemical structure were analyzed by 19F solid‐state NMR and IR spectroscopy. Trifluoromethyl end groups were generated as a result of main chain scission at all irradiation temperatures studied. In addition, trifluoromethyl side groups in various environments and double bond structures were formed. Quantitative analysis showed that long‐chain branches were formed at irradiation temperatures above 200 °C. Furthermore, the hexafluoropropylene (HFP) units in FEP were found to be less sensitive to radiation than the perfluoropropyl vinyl ether (PPVE) units in poly[tetrafluoroethylene‐co‐(perfluoropropyl vinyl ether)] (PFA).

19F solid‐state NMR spectra of FEP.  相似文献   


13.
A simple, easily accessible solvent‐free method for the dispersion of MWCNTs into PET is proposed, based on the preparation of a microparticulate polymer/nanotube masterbatch via cryogenic impact‐milling and its subsequent melt blending with the bulk polymer. Thermal and mechanical properties of nanocomposites prepared using this method were evaluated as a function of nanotube concentration. Thermal stability was improved, and superior crystallization behavior of PET in the nanocomposites was observed. Significant improvements of around 25% in tensile strength and tensile modulus of the nanocomposites was achieved using this strategy, with only 0.25 wt.‐% MWCNT, compared to previous literature data where 1 wt.‐% MWCNT was employed.

  相似文献   


14.
Summary: Functionalized metallocene copolymers synthesized from ethylene with 5‐hexen‐1‐ol and ethylene with 10‐undecen‐1‐ol were used as compatibilizers in LDPE/starch and LDPE/dextran blends in order to improve the interfacial adhesion between hydrophobic LDPE and hydrophilic natural polymers. An increase in tensile modulus and a slight decrease in tensile strength was observed when poly[ethylene‐co‐(10‐undecen‐1‐ol)] was added to a 70:30 wt.‐% LDPE/dextran blend, whereas the addition of poly[ethylene‐co‐(5‐hexen‐1‐ol)] as compatibilizer resulted in obtaining a more rigid material with a slightly higher modulus. Scanning electron microscopy of modified dextran blends containing 3 wt.‐% of both compatibilizers showed some degree of phase cocontinuity. Enhanced interfacial adhesion and decrease in particle size of starch was observed when 5 wt.‐% of poly [ethylene‐co‐(5‐hexen‐1‐ol)] copolymer was used as the compatibilizer in starch blends. The crystallization temperature of LDPE, determined by DSC, was shifted to a slightly higher temperature as a consequence of the addition of the compatibilizers. The existence of phase segregation was also revealed by thermal analysis when 5 wt.‐% of the copolymers were used as blend modifiers.

SEM micrograph of 70:30 wt.‐% LDPE/dextran blend with added poly[ethylene‐co‐(5‐hexen‐1‐ol)] compatibilizer.  相似文献   


15.
Fully exfoliated PS/clay nanocomposites were prepared via FRP in dispersion. Na‐MMT clay was pre‐modified using MPTMS before being used in a dispersion polymerization process. The objective of this study was to determine the impact of the clay concentrations on the monomer conversion, the polymer molecular weight, and the morphology and thermal stability of the nanocomposites prepared via dispersion polymerization. DLS and SEM revealed that the particle size decreased and became more uniformly distributed with increasing clay loading. XRD and TEM revealed that nanocomposites at low clay loading yielded exfoliated structures, while intercalated structures were obtained at higher clay loading.

  相似文献   


16.
Summary: One strategy to solve the problem of unwanted PET oligomer deposits in textile production is their enzymatic cleavage. In this work a selection of different enzymes (esterases, lipases) were tested for this purpose. The capacity to hydrolyse PET oligomers of some of the tested enzymes has been previously described in the literature. In order to imitate practical conditions both dry and precipitated PET oligomers were used. The decrease in the amount of cyclic trimer, the main component of the PET oligomers, was monitored by HPLC. After treatment with the lipase from Triticum aestivum a decrease of 80 wt.‐% was found. However, the effect of this lipase seems to have less to do with catalysing hydrolytic cleavages of ester groups than with the absorption of the oligomer on the enzyme protein.

Cyclic PET trimer (cyclo‐tris[ethyleneglycolterephthalate]).  相似文献   


17.
Summary: Temperature‐responsive hydrogels based on linear HPC and crosslinked P(NTBA‐co‐AAm) were prepared by the semi‐IPN technique. The structure of these semi‐IPN hydrogels was investigated by FT‐IR spectroscopy. An increase in normalized band ratios (A2980/A1665) was observed with increasing HPC content in the initial mixture. The swelling kinetics and water transport mechanism of these semi‐IPN hydrogels were examined and their temperature responsive behaviors were also investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these semi‐IPN hydrogels underwent a volume phase transition between 18 and 22 °C irrespective of the amounts of MBAAm and HPC. However, below the volume phase transition temperature, their equilibrium swelling ratios were affected by the amount of MBAAm and HPC. The pulsatile swelling experiments indicated that the lower the MBAAm and the higher HPC contents in semi‐IPN hydrogels the faster the response rate temperature change.

Equilibrium swelling ratios of the semi‐IPN P(NTBA‐co‐AAm)/HPC hydrogels in water shown as a function of temperature.  相似文献   


18.
Summary: The flex‐fatigue life of carbon‐black‐filled SBR was dramatically improved by incorporation of 4–5 phr nanodispersed clay. Addition of clay did not decrease the degree of crosslinking of the composite but improved the hysteresis and tearing energy. ESEM observation of the flexing‐fracture morphology indicated that nanodispersed clay layers had the advantage over carbon black in that they could blunt the crack.

Effect of the clay amount on the flex fatigue life of the composites.  相似文献   


19.
Nanoparticles based on Al(III) and Zr(IV) melamine phosphate and sulfate, respectively, are prepared. Cone calorimeter measurements reveal that compared to an unfilled polyacrylate matrix the polyacrylate‐based nanocomposites containing the novel nanoparticles display significantly improved flame‐retardant properties as evidenced by the corresponding values for the peak heat release rate, the time‐to‐ignition, the values for the peak rate of heat release, the total heat evolved, the time to the CO peak and the CO yield. Concomitantly, the mechanical properties of the acrylate‐based composite coatings, i.e., the Martens and surface hardness, can also be significantly improved.

  相似文献   


20.
A two‐level factorial experimental design was used to examine the combined effects of o‐MMT gallery polarity, surface modification of MDH, MA‐g‐PP and antioxidant addition, together with processing variables, on the burning behaviour and thermal stability of ternary composites based on PP, MDH and o‐MMT. Regression equations highlighted the detrimental effect of o‐MMT intercalants and possible improvement in the dispersion of o‐MMT at higher MDH levels. A polar gallery environment (providing quat OH groups) led to increased char formation, and MA‐g‐PP combined with o‐MMT led to a higher oxidation onset temperature. Addition of o‐MMT to PP/MDH composites can lead to a reduction in the level of MDH required for effective flame retardation.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号