首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了实现尺度关联周期性多孔结构的隔振性能优化,提出一种周期性多孔结构特征值拓扑优化方法。基于子结构动态凝聚方法对多孔结构的刚度和质量矩阵进行缩减,采用局部水平集函数(LLSF)对多孔结构进行几何隐式描述,以最大化前6阶特征值为目标函数,以结构体积分数为约束条件,建立周期性多孔结构特征值拓扑优化模型,采用优化准则法对拓扑优化模型进行求解,并研究了多孔结构特征值拓扑优化的尺度效应。研究表明,该方法能有效实现尺度关联的二维和三维周期性多孔结构的特征值拓扑优化,并能大幅提高特征值拓扑优化的计算效率。  相似文献   

2.
In this paper, we propose a checkerboard‐free topology optimization method without introducing any additional constraint parameter. This aim is accomplished by the introduction of finite element approximation for continuous material distribution in a fixed design domain. That is, the continuous distribution of microstructures, or equivalently design variables, is realized in the whole design domain in the context of the homogenization design method (HDM), by the discretization with finite element interpolations. By virtue of this continuous FE approximation of design variables, discontinuous distribution like checkerboard patterns disappear without any filtering schemes. We call this proposed method the method of continuous approximation of material distribution (CAMD) to emphasize the continuity imposed on the ‘material field’. Two representative numerical examples are presented to demonstrate the capability and the efficiency of the proposed approach against some classes of numerical instabilities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
基于均匀化理论,建立与微观材料拓扑形状相关的宏观结构材料等效弹性张量。集成宏观结构所得到的位移场,推导出带有宏观结构力学特性的微观敏度。从而实现在给定材料体积分数前提下,以宏观结构最大刚度为目标,对材料微结构进行拓扑优化的目的。相关算例说明该方法可以得到与宏观力学性能相对应的各种微观结构蜂窝材料或复合材料。揭示了材料的微观结构拓扑形状依赖于宏观结构尺寸、载荷及初始边界条件等因素。  相似文献   

4.
In this paper, we propose an approach for reliability‐based design optimization where a structure of minimum weight subject to reliability constraints on the effective stresses is sought. The reliability‐based topology optimization problem is formulated by using the performance measure approach, and the sequential optimization and reliability assessment method is employed. This strategy allows for decoupling the reliability‐based topology optimization problem into 2 steps, namely, deterministic topology optimization and reliability analysis. In particular, the deterministic structural optimization problem subject to stress constraints is addressed with an efficient methodology based on the topological derivative concept together with a level‐set domain representation method. The resulting algorithm is applied to some benchmark problems, showing the effectiveness of the proposed approach.  相似文献   

5.
In this work, a new strategy for solving multiscale topology optimization problems is presented. An alternate direction algorithm and a precomputed offline microstructure database (Computational Vademecum) are used to efficiently solve the problem. In addition, the influence of considering manufacturable constraints is examined. Then, the strategy is extended to solve the coupled problem of designing both the macroscopic and microscopic topologies. Full details of the algorithms and numerical examples to validate the methodology are provided.  相似文献   

6.
7.
This paper will develop a new robust topology optimization method for the concurrent design of cellular composites with an array of identical microstructures subject to random‐interval hybrid uncertainties. A concurrent topology optimization framework is formulated to optimize both the composite macrostructure and the material microstructure. The robust objective function is defined based on the interval mean and interval variance of the corresponding objective function. A new uncertain propagation approach, termed as a hybrid univariate dimension reduction method, is proposed to estimate the interval mean and variance. The sensitivity information of the robust objective function can be obtained after the uncertainty analysis. Several numerical examples are used to validate the effectiveness of the proposed robust topology optimization method.  相似文献   

8.
A multi‐material topology optimization scheme is presented. The formulation includes an arbitrary number of phases with different mechanical properties. To ensure that the sum of the volume fractions is unity and in order to avoid negative phase fractions, an obstacle potential function, which introduces infinity penalty for negative densities, is utilized. The problem is formulated for nonlinear deformations, and the objective of the optimization is the end displacement. The boundary value problems associated with the optimization problem and the equilibrium equation are solved using the finite element method. To illustrate the possibilities of the method, it is applied to a simple boundary value problem where optimal designs using multiple phases are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This article presents a detailed study on the potential and limitations of performing higher‐order multi‐resolution topology optimization with the finite cell method. To circumvent stiffness overestimation in high‐contrast topologies, a length‐scale is applied on the solution using filter methods. The relations between stiffness overestimation, the analysis system, and the applied length‐scale are examined, while a high‐resolution topology is maintained. The computational cost associated with nested topology optimization is reduced significantly compared with the use of first‐order finite elements. This reduction is caused by exploiting the decoupling of density and analysis mesh, and by condensing the higher‐order modes out of the stiffness matrix. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The inclusion of non‐linear elastic analyses into the topology optimization problem is necessary to capture the finite deformation response, e.g. the geometric non‐linear response of compliant mechanisms. In previous work, the non‐linear response is computed by standard non‐linear elastic finite element analysis. Here, we incorporate a load–displacement constraint method to traverse non‐linear equilibrium paths with limit points to design structures that exhibit snap‐through behaviour. To accomplish this, we modify the basic arc length algorithm and embed this analysis into the topology optimization problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Material cloud method (MCM), a new approach for topology optimization, is presented. In MCM, an optimal structure can be obtained by manipulating the sizes and positions of material clouds, which are material patches with finite sizes and constant material densities. The optimal distributions of material clouds can be obtained by MCM using fixed background finite element meshes. In the numerical analysis procedure, only active elements, where more than one material cloud is contained, are treated. Optimal material distribution can be element‐wise extracted from the distribution of material clouds. With MCM, an expansion–reduction procedure of design domain can be naturally realized through movements of material clouds, so that a true optimal solution can be found without any significant increase of computational costs. It is also shown that a clear material distribution with narrow region of intermediate density can be obtained with relatively fast convergence. Several numerical examples are shown. Some of the results are compared with those of the traditional density distribution method (DDM). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Structural designers are reconsidering traditional design procedures using structural optimization techniques. Although shape and sizing optimization techniques have facilitated a great improvement in the emergence of new optimum designs, they are still limited by the fact that a suitable topology must be assumed initially. In this paper a hybrid algorithm entitled constrained adaptive topology optimization, or CATO is introduced. The algorithm, based on an artificial material model and an adaptive updating scheme, combines ideas from the mathematically rigorous homogenization (h) methods and the intuitive evolutionary (e) methods. The algorithm is applied to shell structures under static or free vibration situations. For the static situation, the objective is to produce the stiffest structure subject to given loading conditions, boundary conditions and material properties. For the free vibration situation, the objective is to maximize or minimize a chosen frequency. In both cases, a constraint on the structural volume/mass is applied and the optimization process is achieved by redistributing the material through the shell structure. The efficiency of the proposed algorithm is illustrated through several numerical examples of shells under either static or free vibration situations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In vibration optimization problems, eigenfrequencies are usually maximized in the optimization since resonance phenomena in a mechanical structure must be avoided, and maximizing eigenfrequencies can provide a high probability of dynamic stability. However, vibrating mechanical structures can provide additional useful dynamic functions or performance if desired eigenfrequencies and eigenmode shapes in the structures can be implemented. In this research, we propose a new topology optimization method for designing vibrating structures that targets desired eigenfrequencies and eigenmode shapes. Several numerical examples are presented to confirm that the method presented here can provide optimized vibrating structures applicable to the design of mechanical resonators and actuators. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Composite materials of two‐dimensional structures are designed using the homogenization design method. The composite material is made of two or three different material phases. Designing the composite material consists of finding a distribution of material phases that minimizes the mean compliance of the macrostructure subject to volume fraction constraints of the constituent phases, within a unit cell of periodic microstructures. At the start of the computational solution, the material distribution of the microstructure is represented as a pure mixture of the constituent phases. As the iteration procedure unfolds, the component phases separate themselves out to form distinctive interfaces. The effective material properties of the artificially mixed materials are defined by the interpolation of the constituents. The optimization problem is solved using the sequential linear programming method. Both the macrostructure and the microstructures are analysed using the finite element method in each iteration step. Several examples of optimal topology design of composite material are presented to demonstrate the validity of the present numerical algorithm. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
An extension of the material design problem is presented in which the base cell that characterizes the material microgeometry is polygonal. The setting is the familiar inverse homogenization problem as introduced by Sigmund. Using basic concepts in periodic planar tiling it is shown that base cells of very general geometries can be analysed within the standard topology optimization setting with little additional effort. In particular, the periodic homogenization problem defined on polygonal base cells that tile the plane can be replaced and analysed more efficiently by an equivalent problem that uses simple parallelograms as base cells. Different material layouts can be obtained by varying just two parameters that affect the geometry of the parallelogram, namely, the ratio of the lengths of the sides and the internal angle. This is an efficient way to organize the search of the design space for all possible single‐scale material arrangements and could result in solutions that may be unreachable using a square or rectangular base cell. Examples illustrate the results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A. Radman  Y.M. Xie 《工程优选》2013,45(11):1331-1348
The aim of this study was to design isotropic periodic microstructures of cellular materials using the bidirectional evolutionary structural optimization (BESO) technique. The goal was to determine the optimal distribution of material phase within the periodic base cell. Maximizing bulk modulus or shear modulus was selected as the objective of the material design subject to an isotropy constraint and a volume constraint. The effective properties of the material were found using the homogenization method based on finite element analyses of the base cell. The proposed BESO procedure utilizes the gradient-based sensitivity method to impose the isotropy constraint and gradually evolve the microstructures of cellular materials to an optimum. Numerical examples show the computational efficiency of the approach. A series of new and interesting microstructures of isotropic cellular materials that maximize the bulk or shear modulus have been found and presented. The methodology can be extended to incorporate other material properties of interest such as designing isotropic cellular materials with negative Poisson's ratio.  相似文献   

18.
Dual algorithms are ideally suited for the purpose of topology optimization since they work in the space of Lagrange multipliers associated with the constraints. To date, dual algorithms have been applied only for linear structures. Here we extend this methodology to the case of non‐linear structures. The perimeter constraint is used to make the topology problem well‐posed. We show that the proposed algorithm yields a value of perimeter that is close to that specified by the user. We also address the issue of manufacturability of these designs, by proposing a variant of the standard dual algorithm, which generates designs that are two‐dimensional although the loading and the geometry are three‐dimensional. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Kun Cai  Jiao Shi 《工程优选》2014,46(2):244-260
Since the elasticity of bi-modulus materials is stress dependent, it is difficult to apply most conventional topology optimization methods to such bi-modulus structures owing to great computational expense. Therefore, this study employs the material-replacement method to improve the computational efficiency for topology optimization of bi-modulus structures. In this method, first, the bi-modulus material is replaced by two isotropic materials which have the same tensile or compressive modulus. Secondly, the isotropic materials for finite elements are determined by the local stress/strain states. The local elemental stiffness can be modified according to the current modulus and stress state of the element. Thirdly, the relative densities of elements, acting as the design variables, are updated using the optimality criterion method. Finally, the distributions of elemental densities and moduli are obtained for further applications. Several typical numerical examples are used to demonstrate the effectiveness of the proposed method.  相似文献   

20.
This work is directed toward optimizing concept designs of structures featuring inelastic material behaviours by using topology optimization. In the proposed framework, alternative structural designs are described with the aid of spatial distributions of volume fraction design variables throughout a prescribed design domain. Since two or more materials are permitted to simultaneously occupy local regions of the design domain, small-strain integration algorithms for general two-material mixtures of solids are developed for the Voigt (isostrain) and Reuss (isostress) assumptions, and hybrid combinations thereof. Structural topology optimization problems involving non-linear material behaviours are formulated and algorithms for incremental topology design sensitivity analysis (DSA) of energy type functionals are presented. The consistency between the structural topology design formulation and the developed sensitivity analysis algorithms is established on three small structural topology problems separately involving linear elastic materials, elastoplastic materials, and viscoelastic materials. The good performance of the proposed framework is demonstrated by solving two topology optimization problems to maximize the limit strength of elastoplastic structures. It is demonstrated through the second example that structures optimized for maximal strength can be significantly different than those optimized for minimal elastic compliance. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号