首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
高活性非负载型加氢催化剂的研究   总被引:4,自引:0,他引:4  
使用新型方法制备了高活性非负载型Ni-W-Mo加氢催化剂,并采用X射线粉末衍射仪(XRD)、BET吸附测试法、透射电镜(TEM)对其进行了表征和分析;以甲苯和噻吩为模型化合物,对该催化剂的加氢性能和加氢脱硫性能进行了评价。结果表明,所制备的非负载型Ni-W-Mo加氢催化剂具有较多的活性中心数以及均匀分布的活性结构,显示出比负载型催化剂更高的加氢脱芳和加氢脱硫活性。以柴油为原料在中型加氢装置上对催化剂的加氢活性进行了评价,结果表明,非负载型催化剂的加氢脱硫活性可以达到工业负载型参比剂的近7倍,加氢脱氮活性为负载型参比剂的近3倍;在较为缓和的反应条件下,采用非负载型催化剂可以生产出符合欧V排放标准的清洁柴油。  相似文献   

2.
柴油超深度加氢脱硫非负载型Ni-Mo-W催化剂的研究   总被引:1,自引:0,他引:1  
采用化学合成法制备了多孔金属固溶体,以此固溶体为前驱体制备了非负载型Ni-Mo-W加氢催化剂,采用XRD、TEM方法对硫化态非负载型催化剂进行表征,并以大庆低硫FCC柴油、中东高硫柴油为原料对非负载型催化剂进行深度加氢脱硫性能试验。结果表明,非负载型硫化态Ni-Mo-W催化剂中活性相形态主要为Ni3S2和MoS2/WS2,其中MoS2/WS2堆叠层数为3~8,远高于普通负载型催化剂。该非负载型Ni-Mo-W催化剂,对国内外低硫和高硫柴油加氢脱硫反应均表现出较高的活性和稳定性。  相似文献   

3.
介绍了柴油加氢催化剂近几年的研究进展,分析了负载型催化剂和非负载型催化剂优缺点。从环境保护及能源高效利用方面总结了柴油深度加氢精制催化剂的发展方向,为设计制备新一代柴油加氢催化剂及加快催化剂的工业化应用进程提供了依据。  相似文献   

4.
采用共沉淀法和水热法制备非负载型Ni-Mo-W加氢脱硫催化剂,利用XRD、BET、HRTEM、GC-PFPD表征手段对催化进行表征。结果表明,共沉淀法制备的氧化态催化剂的活性组分具有良好的分散性;水热法制备氧化态催化剂具有较高比表面积、较大孔容、孔径。不同制备方法对硫化态催化剂的晶型结构、比表面积、孔容和孔径影响不大。硫化态催化剂具体较大的比表面积、孔容和孔径,较高的MoS_2和Ni_3S_2晶相堆叠层数。在连续固定高压微反装置上考察了不同制备方法的硫化态催化剂的加氢脱硫活性。结果表明共沉淀法制备的硫化态催化剂的加氢脱硫率高达98.8%,催化剂具有良好的稳定性和催化活性,可持续反应550h。  相似文献   

5.
非负载型催化剂上柴油深度加氢脱硫工艺条件研究   总被引:1,自引:0,他引:1  
采用水热合成法制备了非负载型Ni-Mo-W催化剂并对其进行表征,研究催化裂化(FCC)柴油在该催化剂上的深度加氢脱硫过程,考察反应温度、反应压力、空速和氢油比等工艺条件对柴油深度加氢脱硫效果的影响,并与工业化NiMo/Al2O3催化剂的加氢活性进行对比。结果表明,在反应温度为340 ℃、反应压力为6.0 MPa、空速为1.5 h-1、氢油体积比为600的条件下,非负载型Ni-Mo-W催化剂可使胜华FCC柴油的脱硫率达到99.84%,脱氮率达到99.96%,与工业化NiMo/Al2O3催化剂相比,非负载型Ni-Mo-W催化剂具有更高的加氢活性。  相似文献   

6.
《石油化工》2016,45(12):1460
采用共沉淀法制备了Ni-Mo,Ni-W,Ni-Mo-W非负载型催化剂,利用XRD,LRS,BET,NH_3-TPD,HRTEM等手段对催化剂的微观结构进行了表征,并以催化裂化柴油为原料考察了催化剂的脱硫(HDS)性能。表征结果显示,Ni系非负载型催化剂中Mo/W八面体配位对其微观结构和HDS性能影响较大,具有较多且复杂八面体配位的Ni-Mo-W三金属催化剂硫化还原效果较好、比表面积相对较大、强酸中心数量较多、活性相微观形貌良好,且堆叠层数较高,具有一定的曲率,对深度脱硫十分有利。实验结果表明,制备的Ni系非负载型催化剂的HDS性能显著优于参比负载型催化剂FHUDS-2的HDS性能,且Ni-Mo-W非负载型催化剂的HDS性能最优。  相似文献   

7.
《天然气化工》2017,(2):45-49
非负载型催化剂近年来已逐渐成为石油馏分加氢精制催化剂的研究热点,然而对其研究还远不够深入,金属分散性差、利用率低限制了其实际应用。在Ni-Mo-W非负载型催化剂制备过程中引入助剂聚乙二醇(PEG),采用XRD、N_2物理吸脱附、NH_3-TPD和SEM等手段对催化剂的织构性质、酸性和微观形貌进行表征。结果表明,以PEG为助剂制备的催化剂金属分散性更好,孔隙结构发达,具有更大的酸量和良好的微观形貌,加氢脱硫(HDS)活性显著提升。PEG对催化剂HDS性能的改进程度随PEG分子量的增大而降低,当PEG分子量为400时,Ni-Mo-W非负载型催化剂具有最佳的HDS性能,对FCC柴油的脱硫率可达99.8%,加氢柴油硫含量仅为11μg/g。  相似文献   

8.
在水热法制备Ni-Mo-W非负载型催化剂过程中一次性加入十二烷基苯磺酸钠(SDBS)助剂,得到Ni-Mo-W-SDBS非负载型催化剂。利用XRD、BET、N_2吸附-脱附、NH3-TPD、SEM等手段分析了催化剂的结构和性能,并考察了其加氢脱硫活性。表征结果显示,Ni-Mo-W-SDBS非负载型催化剂的颗粒尺寸较小、金属分散性好、孔隙结构发达、弱酸中心数量多,活性组分分布均匀。SDBS适宜的添加量为30%(基于Mo的物质的量)。Ni-Mo-W-SDBS-30%对FCC柴油的脱硫率可达99.8%,所得加氢柴油的残硫量仅为12μg/g,十六烷值可达48.6。  相似文献   

9.
从催化剂的制备方法、孔结构性质以及加氢活性等方面对不同种类的非负载型加氢精制催化剂进行了概述,并分析了其优缺点。其中,磷化态单金属催化剂的活性较高,但由于制备成本较高,目前工业化应用较难;与双金属催化剂相比,三金属催化剂的活性更高,发展前景较好。与传统的负载型加氢精制催化剂相比,非负载型加氢精制催化剂无需载体且活性组分含量高,具有更高的加氢活性,可以满足社会对油品清洁度的要求。非负载型加氢精制催化剂的制备成本高是目前存在的主要问题,如何降低催化剂的制备成本、提高催化剂的加氢活性是今后发展的方向。  相似文献   

10.
《石油化工》2016,45(2):181
采用共沉淀法制备了Ni-Mo非负载型加氢脱硫催化剂,利用XRD,BET,SEM,Py-IR,NH3-TPD,LRS,HRTEM等手段对催化剂进行表征,考察了老化时间、成胶温度及助剂磷对催化剂结构和性能的影响。表征结果显示,催化剂的晶型由成胶温度决定,老化促进晶型更加完善;制备催化剂适宜的成胶温度和老化时间分别为80℃和3 h。磷改性使催化剂的酸强度减弱,酸量增加,催化剂中钼酸盐结构由四面体配位向八面体配位转变,平均堆垛层数、平均片长和活性Mo原子比例均增大,金属Mo更易形成高堆垛层数的Mo S2片晶结构。实验结果表明,在280℃、4.0 MPa、液时空速2.0 h-1和V(氢)∶V(油)=500的条件下,磷改性使催化剂的加氢脱硫活性由94.0%提高到99.8%。  相似文献   

11.
采用水热反应法合成了一系列NiMo不同比例的多孔复合金属氧化物,用XRD、BET、SEM表征手段对其结构、孔性质等进行了表征,并将NiMo复合金属氧化物制备成非负载型NiMo加氢催化剂,在连续流动高压微反装置上考察了其加氢脱硫、加氢脱氮和芳烃加氢饱和反应活性。结果表明,这几种复合金属氧化物是具有钼酸镍铵晶相的物质,并且随着镍含量的增加,合成的NiMo复合金属氧化物的比表面积和孔容呈现线性增加的趋势,而孔径则表现出双介孔的特征。催化评价结果表明,当NiMo比例为1:1时,制备的非负载型催化剂具有最高的催化加氢性能,并采用“火山模型”对活性差异进行了讨论。  相似文献   

12.
《石油化工》2015,44(11):1409
综述了负载型磷化镍(Ni2P)催化剂的制备方法(还原法、溶剂热法和热解还原法)及其在石油化工领域中应用(加氢脱硫、加氢脱氮、加氢脱氯、加氢脱氧)的研究进展,并分析了催化剂制备方法的优劣。负载型Ni2P催化剂因其催化加氢、脱氢活性高,在烷烃异构化反应中表现出优良的活性,是一类新型的烷烃异构化催化剂。对负载型Ni2P催化剂的发展前景进行了展望,制备更高分散性、更高活性的催化剂将是今后研究的重点。  相似文献   

13.
以新型镍源硫代钼酸镍和四硫代钼酸铵为催化剂前驱体,通过固相反应合成一系列不同Ni/Mo(摩尔比)的非负载型加氢催化剂,用X射线衍射仪(XRD)、场发射扫描式电子显微镜(FESEM)、比表面积检测法(BET)等方法对其结构、孔体积、比表面积等进行表征。并选用二苯并噻吩(DBT)和萘为模型化合物,在250 mL间歇式高压反应釜中考察了加氢脱硫和芳烃加氢饱和性能。结果表明:制备的非负载型Ni-Mo加氢催化剂均具有Ni_3S_2和MoS_2晶相,并且随着镍含量的减少,催化剂的比表面积和孔体积呈增大的趋势;在反应压力为6.5 MPa,反应温度为280℃,体积空速为0.9 h~(-1)的条件下,SNiMo对DBT的转化率为99.79%,并且深度加氢能力最强。  相似文献   

14.
无负载金属硫化物催化剂因其本身即为硫化态,使用时不需要加入有毒的含硫化合物对加氢催化剂进行预硫化,并且具有超高的加氢脱硫能力而被关注。本文综述了无负载纳米硫化钼催化剂的制备技术、表征方法、脱硫机理等内容,并提出了进一步的研究方向。  相似文献   

15.
以相对分子质量为600的聚乙二醇(PEG600)为分散剂、硅藻土为黏结剂对Ni-Mo-W非负载型催化剂进行了改性,采用XRD、N_2吸附-脱附、NH_3-TPD、HRTEM等方法对改性前后的催化剂进行表征,并考察了催化剂的加氢脱硫(HDS)性能。实验结果表明,PEG600使非负载型催化剂的颗粒尺寸减小,孔隙结构更发达,强酸中心数量增多,活性相平均堆叠层数达4.3层,且活性相分布更均匀。Ni-Mo-W-PEG600的HDS活性显著提高,340℃下最高脱硫率为99.6%,加氢柴油硫含量仅为18.6μg/g。加入硅藻土后的Ni-Mo-W-PEG600-DE的比表面积进一步增大,机械强度由4.2 N/mm提升至16.2 N/mm,催化剂的最高脱硫率可达99.8%。  相似文献   

16.
在共沉淀法制备三元(Ni-Mo-W)非负载型催化剂过程中加入聚乙二醇(PEG),采用XRD、BET及微反活性评价考察PEG的最佳相对分子质量及加入量,采用Py-IR,SEM,TEM等后续表征分析最佳条件下PEG对催化剂性质和脱硫活性的影响,采用XRD、LRS对Ni-Mo-W复合氧化物的结构进行深入探究。结果表明:在PEG的相对分子质量为600、加入量为Mo物质的量的20%时,催化剂对劣质柴油的脱硫率最高,可达99.8%;此条件下的Ni-Mo-W非负载型催化剂形态规整,活性组分分布均匀,相互间排列有序,孔隙最为发达,酸位得到充分暴露。合成的Ni-Mo-W复合氧化物是具有不同Mo、W配位的新型Ni基化合物,Ni-W构成主体及表层,内部填充部分主要由Ni-Mo构成。  相似文献   

17.
环己烯作为一种重要的有机化工原料,具有广泛用途。综述了苯选择性加氢制环己烯的反应机理、负载型催化剂载体的选择、催化剂的制备方法及催化剂的改性,展望了苯选择性加氢制环己烯负载型催化剂的研究发展。  相似文献   

18.
以浸渍法和共沉淀法制备的氧化铝负载镍催化剂用于加氢脱除碳五馏分中少量烯烃.实验结果表明,催化剂制备方法对加氢反应结果影响不大,为了得到较佳的加氢效果,催化剂中镍含量应在35%(以氧化镍计)以上;适宜的加氢工艺条件为温度100~120℃、压力0.6~1.2 MPa、液态空速1~3 h-1、氢油体积比125~150.在上述条件下,可使碳五馏分中的烯烃含量脱除至1.0×10-4以下.  相似文献   

19.
介绍了负载型柴油氧化脱硫催化剂的研究进展,主要包括负载型过渡金属催化剂和负载型杂多酸催化剂,从催化剂的载体种类、催化活性和工业应用等方面比较了这两种催化剂的优缺点。通过比较得出,分子筛和活性炭更适合作为氧化脱硫催化剂的载体;负载型杂多酸催化剂具有活性高、活性组分不易流失、便于分离回收循环使用的优点,具有很好的工业应用前景。  相似文献   

20.
介绍了用于苯酚选择性加氢制环己酮的几种传统催化剂及其制备方法,包括负载型Ni催化剂、负载型Pb催化剂以及非晶态合金负载型催化剂;简述了离子液体稳定的过渡金属纳米粒子催化剂的优点及其发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号