首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为探究不同冷却方式对高温后混掺纤维RPC物理力学性能的影响,对混掺聚丙烯纤维和玄武岩纤维的RPC试件进行模拟火灾试验,通过自然冷却和喷水冷却两种方式将高温后试件冷却至常温,测试RPC试件质量、抗压强度、抗折强度、红外热像温升及其随受火温度的变化情况。结果表明:两种冷却条件下,随受火温度的升高,RPC的抗压强度及抗折强度总体均呈下降趋势,其红外平均温升均呈升高趋势;受火温度相同情况下,自然冷却的RPC抗压强度、抗折强度高于喷水冷却的抗压强度、抗折强度;不超过300℃时,自然冷却的RPC抗压强度较常温略有增加,200℃时喷水冷却的RPC抗折强度骤降;相较于自然冷却,喷水冷却的RPC试件红外热像温升更高;红外热像温升与抗压强度、抗折强度相关性均较好。  相似文献   

2.
为了研究混杂纤维对C60高性能混凝土(简称"HPC")高温性能的影响,对掺混杂纤维的C60 HPC进行模拟火灾试验,利用红外热像仪检测HPC试件红外热像平均温升,并分别测试HPC试件抗压强度和劈拉强度,分析HPC抗压强度、劈拉强度、平均温升与受火温度的关系。结果表明,随受火温度提高,PS11和PS21试件红外热像平均温升均呈上升趋势;PS11和PS21试件的抗压强度总体呈下降趋势,但均在400℃出现反弹。分析认为,200~400℃时,聚丙烯纤维熔化所形成的孔道,缓解了混凝土内部的蒸汽压,一定程度上提高了HPC的高温性能;钢纤维可以显著改善HPC高温力学性能。  相似文献   

3.
对素混凝土和体积掺量1%钢纤维C60高性能混凝土模拟高温试验,对高温后抗压强度、劈拉强度及红外热像进行检测,研究了混凝土红外温升与受火温度及剩余强度的关系。结果表明:C60高性能混凝土抗压强度损失率、劈拉强度损失率和红外平均温升均随受火温度升高增加;掺钢纤维HPC红外平均温升大于素混凝土,300℃之前掺钢纤维混凝土红外温升增加较快,300℃之后增长趋势减缓;掺入钢纤维有助于增加高温后剩余抗压及劈拉强度。  相似文献   

4.
对C80HPC试件进行抗压强度试验与超声检测,分析聚丙烯纤维掺量对HPC高温前后混凝土爆裂现象、质量损失、抗压强度、声速变化的影响和不同超声测试距离对混凝土超声速率的影响。结果表明:掺加PP纤维可以明显抑制高温爆裂对C80HPC的影响;C80HPC试件的抗压强度随受火温度的升高而降低,当受火温度在200~300 ℃时,掺聚丙烯纤维的C80HPC试件抗压强度有所反弹;随着温度的升高,C80HPC试件超声声速下降,随着测距的增加,超声声速下降,下降幅度不大,可以通过超声声速探测混凝土内部损伤缺陷。建立了C80HPC抗压强度、受火温度和超声声速的关系。  相似文献   

5.
为研究聚丙烯纤维对C80高性能混凝土(简称“HPC”)的高温后劈拉强度的影响,对素C80HPC及掺加0.1%和0.2%的C80HPC进行高温试验,观察记录混凝土的爆裂情况,并对试件进行劈拉强度试验,利用红外热像仪检测C80HPC试件断面的红外温升,分析HPC的劈拉强度、红外温升与受火温度的关系。结果表明,在C80HPC中掺入0.1%的聚丙烯纤维可以抑制爆裂的发生;HPC的劈拉强度均随受火温度的升高而不断下降,掺入聚丙烯纤维会降低HPC的劈拉强度;建立的受火温度与红外平均温升、劈拉强度的回归方程可用于火灾后HPC的火灾温度、剩余强度的鉴定及后期建筑恢复。  相似文献   

6.
《Planning》2018,(1)
为了解不同受火温度后不同冷却方式下钢筋物理力学性能的变化,试验测试了HRB400钢筋在不同受火温度及喷水、自然和炉内3种冷却方式冷却后钢筋的屈服强度、抗拉强度、断后伸长率、断面收缩率等参数的变化情况,并采用无损红外热像检测技术对高温后不同冷却方式的钢筋进行了红外图谱分析。结果表明:高温后钢筋的力学性能变化规律与钢筋的受火温度和冷却方式有关,其中炉内冷却和自然冷却的力学性能变化规律相近,而喷水冷却变动较为剧烈;随着钢筋受火温度的升高,红外平均温升提高,受火温度低于700℃时,冷却方式对受火钢筋的红外平均温升影响不大,受火温度高于700℃时,喷水冷却对红外平均温升影响较大;基于试验数据建立了钢筋红外平均温升与受火温度、屈服强度比和抗拉强度比关系的拟合公式,可用于火灾后HRB400钢筋的承载能力的评估。  相似文献   

7.
孙磊  杜红秀 《混凝土》2022,(10):34-37
为探究冷却方式对混掺纤维RPC高温后强度损伤的影响,对混掺聚丙烯纤维和玄武岩纤维的RPC试件进行高温处理,研究其在自然冷却和喷水冷却两种方式下力学性能、超声波速与受火温度的关系,结果表明:随受火温度升高,RPC的抗压强度、抗折强度、超声波速呈下降趋势,平均孔径、孔隙率呈上升趋势;相同受火温度下,自然冷却后RPC抗压强度、抗折强度、超声波速均高于喷水冷却后的相应值,平均孔径和孔隙率有所降低;随着聚丙烯纤维掺量的增加,高温后RPC抗折强度呈上升趋势,抗压强度及超声波速呈下降趋势;玄武岩纤维可改善RPC力学性能。  相似文献   

8.
《Planning》2020,(4)
为研究纤维及二次养护对C60高性能混凝土(high performance concrete, HPC)高温后强度的影响,对掺加聚丙烯纤维、钢纤维及混杂纤维(聚丙烯纤维和钢纤维混掺)的C60 HPC进行模拟火灾试验;待试件冷却至常温(20℃)后,分别设计2组试验(一组为直接加载,另一组为继续标准养护14 d后进行加载),测定其抗压强度和劈裂抗拉强度。试验结果表明:随受火温度升高,各纤维掺量C60 HPC抗压强度和劈裂抗拉强度均下降;与不掺或单掺纤维相比,混掺纤维可显著降低高温对混凝土的损伤;对高温后C60 HPC进行二次养护可使其抗压强度和劈裂抗拉强度得到一定程度回升。  相似文献   

9.
研究了高温作用温度、静置时间和冷却方式对高温后轻骨料混凝土抗压强度的影响。结果表明,随着温度的升高,轻骨料混凝土的抗压强度基本呈降低趋势;自然冷却试件在温度低于900℃时,抗压强度随着静置时间的延长基本趋于稳定;900℃高温作用后,试件的抗压强度随静置时间延长明显降低。喷水冷却试件在温度低于300℃时,抗压强度随静置时间的延长基本保持不变;500℃和700℃作用后抗压强度随静置时间延长明显提高;900℃作用后,抗压强度随静置时间延长大幅降低。静置1 d时,各温度作用后自然冷却试件的强度均高于喷水冷却试件;静置14、28 d时,经500、700℃作用后,喷水冷却试件强度高于自然冷却试件。  相似文献   

10.
为了改善高强高性能混凝土的脆性及高温性能,将钢纤维与聚丙烯纤维混杂掺入C60HPC,研究其对混凝土劈拉强度以及超声声速的影响。设计了素混凝土、混掺钢纤维(体积掺量1.0%)和聚丙烯纤维(体积掺量0、0.1%、0.2%)组合的4种C60HPC,制作标准立方体试件由行高温(20~700℃)试验,测试混凝土试件的劈拉强度及超声波速,分析其随受火温度的变化规律。结果表明:C60HPC试件的劈拉强度及超声声速均随受火温度的升高基本均呈线性降低趋势;相同受火温度作用后,掺钢纤维的HPC较素混凝土劈拉强度及超声波速均有明显提高,混掺钢纤维和聚丙烯纤维混凝土较素混凝土的劈拉强度及超声波速有进一步提高,混掺纤维有利于改善高强高性能混凝土的脆性及高温性能,最优混掺组合为1.0%钢纤维和0.2%聚丙烯纤维。  相似文献   

11.
张晓艺  杜帆  杜红秀 《混凝土》2021,(1):70-72,76
为了改善混凝土板在高温作用下热应变的变化程度,本文将聚丙烯纤维(简称PP)掺入到C60HPC小板中,研究其对混凝土热应变及温度传递的影响,试验设计了素混凝土、PP体积掺量分别为0.1%、0.2%、0.3%的4块C60HPC小板,模拟高温试验,测试混凝土小板不同深度处(距离小板受火底部25、50、75 mm)的温度及对应的热应变值,分析热应变值随时间和受火温度的变化规律,研究PP纤维对C60HPC小板热应变的影响。结果表明:不同PP纤维掺量的C60HPC小板在不同深度处的热应变值随着时间的变化基本呈直线上升的变化规律;掺PP纤维对高温作用下C60HPC小板的热应变有一定的抑制作用,最优PP纤维掺量为0.2%;在一定温度范围内,PP纤维掺量为0.2%的C60HPC小板热应变和温度基本呈二次函数关系,相关性较好。  相似文献   

12.
为研究PP纤维及高温对C80 高性能混凝土(C80 HPC)断裂性能的影响,对聚丙烯(polypropylene,PP)纤维体积掺量为0%和0.2%的C80 HPC模拟高温试验,并对高温后C80 HPC试件进行三点弯曲断裂性能测试,绘制荷载-开口位移曲线,计算断裂参数。结果表明:C80 HPC的起裂韧度和失稳韧度随作用温度升高总体呈下降趋势;起裂韧度单调下降;失稳韧度在温度低于300℃时略有下降,400℃时反弹,略高于常温值,400℃以后迅速下降;掺0.2%PP纤维C80 HPC的起裂韧度和失稳韧度均高于不掺纤维的C80 HPC,PP纤维能改善C80 HPC的抗裂性能。  相似文献   

13.
刘晓仙  杜红秀  徐瑶瑶 《混凝土》2021,(1):87-90,97
为了提高活性粉末混凝土(RPC)的力学性能并改善其高温爆裂性,在RPC中将0.3%、0.4%聚丙烯纤维(PP)和0、1%、2%、3%钢纤维(S)组合复掺,共设计8组试件,养护并模拟火灾试验,统计试件在高温(200、400、600℃)作用下的爆裂情况,研究复掺纤维对高温后RPC的抗折和抗压强度、强度损失率、折压比的影响,抗压强度、受火温度与超声波速的规律,确定两种纤维的最佳配合比。结果表明:掺入PP可以改善RPC高温爆裂;RPC抗折、抗压强度、折压比及超声波速随受火温度升高均呈先上升再下降的趋势,复掺入S可提升RPC的抗压、抗折强度和折压比;当S与PP掺量分别为1%与0.3%、2%、0.4%时,RPC未爆裂且强度较高,超声波速与抗压强度的相关性也较高。  相似文献   

14.
测试了高温后轻骨料混凝土(LWC)的力学性能,探究了聚丙烯纤维掺量、高温温度(100、300、500、700、900℃)和冷却方式对LWC高温力学性能的影响,分析了LWC高温力学性能的劣化机理。结果表明:掺入适量的聚丙烯纤维可以提高LWC的残余抗压强度;在100~300℃和500~900℃区间温度时,各试件的烧失率增幅较大;经100℃高温后,喷水冷却的LWC残余抗压强度优于自然冷却的LWC,但经300℃高温后,相比于自然冷却,喷水冷却的LWC残余抗压强度降低幅度更大;自然冷却的LWC在300℃时出现较少裂缝,在500℃时裂缝快速发展;由于砂浆与骨料热膨胀系数的差异,喷水冷却使基体-骨料界面裂缝快速发展,LWC在300℃时便形成较多裂缝,故残余抗压强度降低幅度更大。  相似文献   

15.
混凝土结构火灾损伤红外热像检测试验研究   总被引:1,自引:0,他引:1  
根据混凝土结构火灾损伤特点 ,采用红外热像检测技术 ,对混凝土结构火灾损伤进行了试验研究 ,给出了混凝土的热像平均温升和抗压强度随着温度变化的曲线 ,并对影响混凝土热像平均温升和抗压强度的因素进行了分析。  相似文献   

16.
以轻质水泥基结构为研究对象,利用红外热像和多通路温度传感器检测材料在火灾中经历的最高温度。在红外热像温升随时间的变化关系的基础上,建立了轻质水泥基材料的红外热像平均温升与其受火温度及强度损失的回归方程,得到该结构的火灾损伤的检测和评估模型。结果表明:(1)作为含有气泡状有机质的新型建筑材料,其高温作用后的红外热像温升明显较混凝土结构高;(2)材料的受火温度和材料强度损失的检测模型分别为:T=472.734 458x-587.909 642和f(T)/f0=110.662 138-0.154 507x;(3)通过红外热像检测模型,可评估火灾后的轻质水泥基材料的损伤程度,获得结构破坏前兆信息。  相似文献   

17.
对C60高性能混凝土和HRB400钢筋进行模拟火灾高温试验,测试了高温冷却作用后(9种温度、2种冷却方式)混凝土与钢筋的力学性能,得到了高温后混凝土抗压强度、钢筋屈服强度和抗拉强度。采用红外热像仪,拍摄并分析了高温后混凝土与钢筋的红外热像图谱。结果表明,不同冷却方式、不同受火温度下混凝土与钢筋的力学性能退化、红外热像图谱变化规律不同。根据试验结果,提出了高温后不同冷却方式下混凝土与钢筋力学性能损伤的计算公式。  相似文献   

18.
采用X射线计算机断层扫描(X-CT)技术,对20~600℃下C60高性能混凝土(HPC)和掺0.2%聚丙烯纤维C60高性能混凝土(PPHPC)的细观结构进行试验研究,旨在分析高温及聚丙烯纤维对高性能混凝土内部细观结构损伤及劣化衍化的影响,揭示高性能混凝土高温爆裂及聚丙烯纤维改善其高温性能的机理.结果表明:随着温度的升高,混凝土的孔隙率、平均孔径不断增加,裂缝长度、宽度、面积及周长均有所发展,内部细观结构不断劣化,抗压强度随之降低;400℃高温作用后,PPHPC内部孔隙数量较HPC有所增加;X-CT图像直观表明PPHPC劣化滞后于HPC,PPHPC孔隙增长率及抗压强度损失率均较HPC低;受火温度与缺陷率是影响混凝土强度的主要因素,掺聚丙烯纤维可以改善HPC的高温性能.  相似文献   

19.
对普通混凝土、镀铜微丝钢纤维混凝土、纤维素纤维混凝土进行200℃、400℃、600℃、800℃的高温作用,然后对高温试件分别进行自然冷却和射水冷却,得到了三种混凝土在不同温度、不同冷却方式下的质量损失率、残余抗压强度以及表观损伤指标。对比研究表明,在射水冷却条件下,普通混凝土和纤维素纤维混凝土的残余抗压强度相比较自然冷却有明显的下降,其中纤维素纤维混凝土在600℃下降了24.2%,800℃的普通混凝土在射水冷却过程中发生了爆炸,对现实火灾扑救极为不利,而射水冷却对钢纤维混凝土的影响不明显,残余抗压强度与自然冷却试件基本相同。  相似文献   

20.
研究了普通混凝土(NC)、聚丙烯纤维混凝土(PPFRC)和聚丙烯腈纤维混凝土(PANFRC)在常温及300,600,1000℃高温后的抗压强度和抗折强度,分析了高温加热方式及加载条件不同的影响。研究表明,300℃高温下混凝土的劣化主要受升温速率的影响;600℃以上高温下混凝土的劣化主要受温度的影响。掺入低掺量的PP纤维和PAN纤维可缓解混凝土的高温劣化,从而提高高温后混凝土的抗压强度和背火面加载时的抗折强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号