首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
摘 要:汽车高速行驶过程中,车外气动噪声和轮胎辐射噪声对人耳侧的影响难以定量分析。利用高速公路试验结合传递路径分析的方法,研究汽车高速工况下车外相关位置气动噪声和轮胎辐射噪声的传递特性;分析了气动噪声和轮胎辐射噪声信号的频谱特性;对驾驶员耳侧的气动噪声和轮胎辐射噪声进行了定量分析,计算出车外不同位置、类型噪声对驾驶员耳侧的噪声贡献量,并进行了贡献量排序;将高速工况驾驶员耳侧拟合噪声信号与实测信号进行了对比分析。  相似文献   

2.
以某车型车内噪声声压级为目标,以单一源求逆法辨识排气噪声体积加速度,并测试排气口到车内噪声目标点的声学传递函数。计算排气管口通过空气传递路径到车内噪声的贡献量,得知在发动机1730rpm附近排气噪声的2阶激励频率是车内噪声的主要贡献源,此时车内噪声主要是排气噪声过大引起的。增加车辆的吸隔音措施效果不明显,应优化排气管消声器以降低排气噪声。实验验证了分析结果。  相似文献   

3.
针对某特种车车内噪声水平较高问题,建立车身结构与声固耦合有限元分析模型,并进行车身振动频响分析和车内声压响应分析;通过仿真结果与实车道路试验结果对比,验证车身结构和声固耦合有限元模型的有效性;利用耦合声学边界元法进行驾驶室内部声学特性研究,识别出不同工况的主要噪声频率;并对影响车内噪声的车身板件进行声学贡献分析,找到对车内声压贡献最大的板件;最后对声学贡献大的板件粘贴阻尼材料来对车内进行降噪,车内噪声得到较为明显改善。  相似文献   

4.
针对某SRV车,建立可靠的白车身有限元模型、声腔边界元模型和有限元边界元耦合模型;在计算出场点声压频率响应的基础上,对峰值频率处进行面板贡献量分析,找出产生峰值声压的主要来源;基于模态修改法优化主要振动区域腹部节点的速度来降低车内噪声。  相似文献   

5.
针对某SUV试制车基于GB 1495-20××草案的室内通过噪声超标问题,在半消声室内的低噪声四驱转毂试验台上,首先使用声学照相机对被测车辆在规定工况下行驶时的主要噪声源进行快速准确定位,然后应用逐一拆除屏蔽的方法,实现了对影响通过噪声的各主因素的贡献量排序分析,并依此提出相应的整改措施。采取整改措施后的验证结果表明,室内通过噪声较原车降低了2.8dB(A),达到了对标要求。本方法可为提高通过噪声贡献量分析试验的效率和测试一致性提供参考。  相似文献   

6.
统计能量分析方法适于解决高频高模态密度的复杂动力学问题。采用该方法对25型铁路客车进行研究。用模态相似群法建立整车统计能量分析模型,仿真预测客车内场噪声的分布情况和噪声的主要传播路径,进而提出降低车内噪声的措施,尽管得出的是相对的结果,但是这些结论可以使设计者在设计初期考虑噪声指标成为可能。  相似文献   

7.
汽车空气滤清器声学性能数值计算及分析   总被引:3,自引:0,他引:3  
发动机进气系统设计除了满足进气和空气滤清要求外,通常还要求能够有效地降低进气噪声。设计消声效果良好的空气滤清器是控制发动机进气噪声的有效措施之一。由于一维平面波理论只适于低频分析,为了扩大分析的频率范围,采用了三维有限元数值方法分析空气滤清器的声学特性。同时,空气滤清器中的滤纸大多是纤维材料,可以作为吸声材料来处理,所以在考虑滤纸的情况下分析空气滤清器的消声性能,其中以纤维吸声材料的经验公式来模拟滤纸的声学特性。通过比较不带滤纸和带有滤纸的空气滤清器的声学性能结果表明,滤纸的考虑与否对空滤器的中高频消声性能有很大影响。  相似文献   

8.
首先建立客车结构噪声传递函数模型分析车内噪声峰值频率点。然后通过工作变形分析函数模型分析在这些噪声峰值频率点车身发生振动变形较大的位置。将这些振动变形较大的位置设置成噪声贡献面板,建立面板声学贡献量分析模型来确定这些面板对车内噪声水平贡献程度,确定板件对车内声压影响主次关系。该方法为车内噪声评估和车身面板优化提供有效理论指导。  相似文献   

9.
随着高速列车运行速度的不断提升,高速列车内部噪声与限值之间矛盾日益突出。在运行工况下对噪声源进行识别是低噪声设计的前提和必要手段。传递路径分析提供了一种快速有效的分析车厢内部主要噪声传递路径和噪声源贡献的技术。因此,比较不同的激励源对车厢内部噪声贡献大小和判断主要传递路径分析,对于改善车厢内部声环境设计有重要参考价值。本文利用运行工况下传递路径分析技术对高速列车CRH380B进行测试,首次将气动噪声作为一种高速列车主要激励源进行分析,得到了不同的噪声源贡献量的对比结果。通过结果分析,车厢内噪声主要来自于转向架和车顶区域。  相似文献   

10.
车身板件对车内噪声的贡献量分析   总被引:2,自引:0,他引:2  
讨论车身板件对车内空腔辐射噪声的贡献量分析.通过对声源强度和声学传递函数的乘积求和来进行某块板在目标位置声压贡献量的合成.利用互异法间接测量声学传递函数,通过截面面积和其法向加速度的乘积得到声源强度值.模拟计算前面试验边界条件建立的有限元模型,有限元计算结果和实测数据进行对比.  相似文献   

11.
Creep Groan(吱嘎声)噪声是一种频率小于1 000 Hz的低频噪声,当自动挡车型采用D挡、R挡慢慢松开刹车起步或低速轻踩刹车慢慢停止时都容易产生该噪声。以前Creep Groan噪声主要通过修改摩擦片的摩擦材料进行优化,很少通过分析和改进Creep Groan噪声传递路径进行优化。主要通过相干性、ODS、NTF分析,确定Creep Groan噪声主要传递路径为车辆前悬挂系统,关键节点为车辆前悬挂系统中减震器的Top mount。通过降低Top mount硬度使Creep Groan噪声改善明显,达到可接受主观驾评。  相似文献   

12.
由于缺少发动机噪声的覆盖,新能源汽车空调鼓风机产生的气动噪声成为影响乘车舒适性的重要噪声源,主要针对某新能源汽车空调鼓风机系统进行气动噪声特性分析和优化,以适应更加严苛的噪声控制要求.采用AN-SYS数值模拟软件和半消声实验室,通过对原始叶轮模型流场和声场的研究分析复杂的轮毂、叶片、气流和结构部件周期性相互作用产生的气...  相似文献   

13.
燃料电池汽车(FCV)的动力系统及噪声特性与传统汽车相比有着很大差异,其中空气辅助系统已成为主要的噪声源。虽然有源噪声控制(ANC)是近年来的研究热点;但是,由于噪声源与环境的时变性,对空辅系统的中低频段噪声更有效的对策是使用自适应有源噪声控制技术(AANC)。在归纳总结有源噪声控制技术的发展进程及基本原理的基础上,阐述近年来有源噪声控制的研究现状,并重点分析关注自适应算法的研究进展;由此对自适应有源噪声控制在燃料电池汽车空辅系统减振降噪方面的应用前景进行预测和展望。  相似文献   

14.
徐亮 《计量与测试技术》2010,37(8):24-25,27
通过分析不同测量环境下移动式空压机的噪声测量数据,阐明不同测量环境对试验结果的影响,提出测量环境的选择方法,计算出不同环境下环境修正值K对测量结果的影响。  相似文献   

15.
以某商住两用高层建筑内对居民影响较大的大型超市货梯曳引机噪声治理为例,在测量分析货梯机房及受影响住宅室内振动与噪声信号基础上,结合声源识别,提出对货梯曳引机采取隔振设计,降低结构传播至住宅室内噪声的工程措施,并对工程实施后的降噪效果进行实测。结果表明,隔振处理后,除共振区外,在5~1 000 Hz各1/3倍频程上隔振器上、下振动加速度级差为15.0~32.4 dB,隔振效率为82.2 %~97.6 %;机房内曳引机通过建筑结构传播至住宅室内的噪声,在63~2 000 Hz各倍频程上声压级降低8.9~21.4 dB,其中以250 Hz所在倍频程声压级降低量为最大,最终消除了居民相关噪声投诉。  相似文献   

16.
汽车的噪声、振动和舒适度(NVH)是衡量汽车制造质量的一个综合性技术指标,尤其体现为驾驶室的振动噪声水平。采用统计能量分析法(SEA)原理对某一型号农用收割机的驾驶室进行噪声预测分析,并对SEA的建模有效性进行实验验证。研究结果表明:在低频域,驾驶室背板的振动是引起驾驶室噪声的主要因素,而在高频段,驾驶室噪声水平则主要取决于外部噪声。对此,可采用增加壁板结构阻尼的方法来有效拟制驾驶室内部低频噪声,同时通过增加驾驶室壁板厚度等方法降低驾驶室内的低频噪声。另外,减少各个子系统连接间的泄漏也是改善高频噪声的一个有效途径。  相似文献   

17.
车内噪声预测与面板声学贡献度分析   总被引:14,自引:4,他引:14  
面板声学贡献度分析是汽车NVH特性研究的重要内容,识别各面板对车内场点的贡献度对于控制车内噪声有着重要意义。利用有限元结合边界元的方法,建立三维车辆乘坐室声固耦合模型,使用ANSYS软件计算出乘坐室在20-200Hz频率的声固耦合振动特性后,采用LMS Virtual.lab软件预测了驾驶员左、右耳的声压响应。并通过各壁板对驾驶员右耳声压的面板贡献度分析,得出了各壁板对驾驶员右耳总声压的贡献度,为降低车内某点噪声进行结构修改提供理论依据。通过对结构修改,有效降低了车内某点噪声。  相似文献   

18.
为研究自动旅客捷运(Automated Passenger Mover,APM)车辆车内噪声特性,建立FEM-SEA声学分析模型。通过现场测试的方法得到结构振动激励和空气声源激励,将之施加于声学分析模型中,得到APM车辆车内噪声仿真结果,并与实测噪声结果校核以验证模型准确性,通过声学参数灵敏度分析,得到对车内关键部位影响较大的声学参数,为APM车辆车内噪声优化提供指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号