首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
列车行驶在小半径曲线段上时的振动加速度一般大于在同种轨道结构直线段上的值。为了研究在小半径曲线段上行驶时列车车内振动的频谱特性,选择半径为350 m的地下隧道区间进行测试,该区间内分布着钢弹簧浮置板整体道床、科隆蛋扣件和DT-III型扣件3种轨道结构。分析采用双面胶带、螺钉等多种传感器安装方式对测量结果的影响,采用DASP V11软件测量一天中3个不同时段车厢地板垂向和横向振动加速度,并进行Z振级和X振级分析。结果表明:半径为350 m的曲线隧道内,钢弹簧浮置板整体道床、科隆蛋扣件和DT-III型扣件3个区段上车厢地板振动对应的垂向振级峰值频率分别为8 Hz和63 Hz,3.15 Hz、8 Hz和63 Hz,50 Hz和100 Hz;横向振级峰值频率为63 Hz,63Hz,50 Hz和100 Hz;钢弹簧浮置板整体道床段和科隆蛋扣件段上车厢地板振动加速度大于其在DT-III型扣件段上的值。本次测试可为小半径曲线段上列车振动噪声问题提供一些减振降噪措施选择方面的参考,同时可为在小半径曲线段上车厢地板振动特性问题的研究提供支持。  相似文献   

2.
在列车正常运行条件下对某地铁曲线路段钢弹簧浮置板道床、科隆蛋和普通扣件轨道结构段的隧道壁振动和地面垂向振动进行现场测试,通过时域和频域分析对比地铁经过时不同轨道结构段振动从隧道壁传到地面以及地面垂向振动随距离的传播规律。结果表明:振动从隧道壁传至地面时200 Hz~500 Hz频段衰减较快,且地面垂向振动主频在100 Hz以内,隧道壁振动主频在300 Hz以内;钢弹簧浮置板道床和科隆蛋结构段的地面垂向振动随着离开线路中心线距离的增加而减小;在普通扣件结构段距线路中心线30 m左右处存在一个振动放大区;列车经过时轨道线正上方0~30 m范围内垂向振动的峰值频率主要在40 Hz至63 Hz。该测试方法和研究结果可为地铁线路设计提供相应参考。  相似文献   

3.
为评价成都地铁钢弹簧浮置道床的实际减振效果,选取线路条件基本相同的断面,分别对圆形盾构隧道直线段和曲线段的钢弹簧浮置板道床以及对应的普通整体式道床进行现场测试。在时域和频域内分析了钢弹簧浮置板道床减振段隧道壁垂向振动特性与实际减振效果。结果表明:(1)在圆形隧道直线段和曲线段中运用钢弹簧浮置板轨道均可对隧道壁振动起到很好的减振作用,隧道壁减振效果分别为22.16dB和19.15dB;(2)直线段和曲线段钢弹簧浮置板轨道的显著减振频率范围分布为25Hz~200Hz和40Hz~200Hz,但均在6.3~16Hz表现出振动放大现象。  相似文献   

4.
以南昌地铁1号线八一广场段为工程背景,对轨道-隧道-大地的三维有限元模型进行动力学分析。分别建立三种道床模型:整体道床、弹性支承块道床和钢弹簧浮置板道床。以振动加速度、1/3倍频程振动加速度级和Z振级作为评价指标,比较不同轨道结构下隧道壁及地面的振动响应。随之减振道床支承刚度的变化,分析道床的自振频率对减振效果的影响。计算表明:列车引起的地面振动主频在40 Hz附近;减振道床的自振频率对减振效果有较大影响;钢弹簧浮置板道床减振效果明显优于弹性支承块道床。  相似文献   

5.
当列车通过浮置板轨道和减振型扣件轨道等减振区段时,车内噪声较大,影响乘客的舒适性。滚动噪声是车内噪声的重要组成部分,而钢轨声功率反映了钢轨滚动噪声能量的大小。为了研究地铁隔振措施对钢轨声功率特性的影响,对不同隔振措施下钢轨垂向振动沿纵向的轨道衰减率和钢轨加速度导纳进行了测试,计算分析了单位简谐点激励下的钢轨垂向振动相对声功率级。结果表明所测隔振措施通过降低轨道垂向刚度,改变了钢轨垂向振动的加速度导纳幅值和轨道衰减率。钢弹簧浮置板道床和减振垫浮置板道床提高了三分之一倍频程中心频率200 Hz以下的轨道衰减率,而GJ-III型减振扣件长枕整体道床的衰减率在中心频率2 500 Hz以下小于非减振型扣件长枕整体道床。钢轨在受到单位简谐点激励作用时,浮置板道床的钢轨声功率在200 Hz以下明显增大,而GJ-III型减振扣件长枕整体道床的钢轨声功率在500 Hz以下明显增大。  相似文献   

6.
为评价成都地铁钢弹簧浮置道床的实际减振效果,选取线路条件基本相同的断面,分别对圆形盾构隧道直线段和曲线段的钢弹簧浮置板道床以及对应的普通整体式道床进行现场测试。在时域和频域内分析钢弹簧浮置板道床减振段隧道壁垂向振动特性与实际减振效果。结果表明:(1)在圆形隧道直线段和曲线段中运用钢弹簧浮置板轨道均可对隧道壁振动起到很好的减振作用,隧道壁减振效果分别为22.16 dB和19.15 dB;(2)直线段和曲线段钢弹簧浮置板轨道的显著减振频率范围分布为25 Hz~200 Hz和40 Hz~200 Hz,但均在6.3 Hz~16 Hz表现出振动放大现象。  相似文献   

7.
通过对地铁高架桥上双层非线性减振扣件、减振垫浮置板、橡胶弹簧浮置板、钢弹簧浮置板轨道的现场振动和噪声测试,对高架线不同减振轨道结构的实际减振降噪效果进行分析和评价,分析了桥梁结构振动与辐射噪声之间的关系和不同减振轨道对减小桥梁结构辐射噪声的效果,可为今后的轨道减振设计提供借鉴,研究表明:相对于双层非线性减振扣件整体道床桥面,减振垫浮置板、橡胶弹簧、钢弹簧浮置板在1~80 Hz内VLzmax的减振效果分别为10.2 dB,10.6 dB,11.8 dB;在1~200 Hz内VLza的减振效果分别为10.3 dB,12.7 dB,12.6 dB;高架线的噪声源频谱是宽频的,在中心频率80 Hz和630 Hz处噪声出现明显峰值;桥梁结构辐射噪声以12.5~250.0 Hz低频噪声为主,桥梁结构辐射噪声可通过桥梁振动速度级或振动加速度级来计算;高架线采用减振轨道可减小桥梁结构辐射噪声,相对于双层非线性减振扣件整体道床桥面,减振垫浮置板、橡胶弹簧、钢弹簧浮置板在12.5~250.0 Hz内桥梁结构辐射噪声LAeq, Tp的降噪效果...  相似文献   

8.
通过对地铁隧道内普通整体道床、Ⅲ型轨道减振器、弹性短轨枕、梯形轨枕、钢弹簧浮置板道床的现场振动测试,进行时、频域对比,了解各种减振措施在不同频率范围内的减振效果差异。结果表明,轨道减振器、梯形轨枕、弹性短轨枕及钢弹簧浮置板可分别降低隧道壁VLZmax分别为4 dB,7.6 dB,7.8 dB,19.0 dB;无论何种轨道减振措施,高频减振效果高于低频减振效果, Z计权的振动加速度级明显小于不计权的振动加速度级减振效果;梯形轨枕、弹性短轨枕、轨道减振器对50 Hz以上振动减振效果明显,钢弹簧浮置板道床对12.5 Hz以上振动减振效果明显,对控制列车运行产生的二次噪声更有效。  相似文献   

9.
车轮多边形磨损是地铁车辆运营过程中经常出现的现象,该现象易导致车辆和轨道结构发生异常振动。针对国内某地铁线路,在现场测试车轮多边形磨损状态基础上,通过测试对比有、无车轮多边形磨损的车辆通过地铁线路减振式钢弹簧浮置板道床段和非减振普通整体道床段时的轨道振动加速度,研究地铁车轮多边形磨损状态对轨道振动大小和减振特性的影响。结果表明:调查的地铁线路列车车轮存在13 阶~17 阶多边形磨损,其粗糙度平均水平为21.3 dB re 1 μm;当存在车轮多边形磨损的列车通过浮置板轨道时,钢轨、弹条、轨枕、道床、隧道壁测点的垂向振动加速度均方根值分别为105.09 m/s2、154.41 m/s2、13.04 m/s2、8.16 m/s2、0.028 m/s2,与无车轮多边形磨损列车通过时相比,振动水平分别增大了137.5 %、145.3 %、105.4 %、111.9 %、75.0 %。车轮多边形磨损对浮置板轨道的道床板及其以上部件振动水平的影响比对普通整体道床轨道的更显著,对浮置板轨道隧道壁振动的影响则小于对普通整体道床轨道隧道壁的影响。存在车轮多边形磨损的车辆通过浮置板轨道时,通过频率为61 Hz~104 Hz,易激发轨道的整体垂向弯曲共振模态,引起道床板振动幅值过大。在运行列车有、无13 阶~17 阶多边形磨损时,钢弹簧浮置板轨道减振量分别为29.33 dB和35.11 dB,车轮多边形磨损的存在降低浮置板轨道的减振效果。  相似文献   

10.
以小半径曲线段浮置板轨道结构为研究对象,建立曲线段浮置板轨道的横向振动模型,结合现场的钢轨-道床-车厢等“三维一体”实时测试,重点挖掘同一时刻同一辆车下浮置板道床横向频响、钢轨粗糙度与车内噪声的频响相互对应特征,深入剖析曲线段浮置板轨道结构横向特征对车内噪声的影响机理。结果表明(:1)半径350 m曲线段浮置板轨道结构的横向中高动态频响400 Hz~630 Hz与车内噪声超标频段范围一致(;2)曲线段浮置板轨道钢轨31.5 mm的波长是导致车厢内噪声异常超标的主要原因(;3)抑制短波长波磨发展及添加谐振式钢轨阻尼器是控制车内噪声的主要方法,研究成果对车内噪声治理与轨道结构设计具有可靠的参考价值。  相似文献   

11.
基于ANSYS软件建立钢弹簧浮置板轨道三维有限元分析模型,研究扣件和隔振器失效对地铁轨道交通列车—钢弹簧浮置板系统的动力响应影响。研究表明:当列车行驶在扣件和隔振器失效的钢弹簧浮置板轨道上,钢轨垂向位移、加速度和临近扣件支点反力变化显著,且随着失效扣件和隔振器数目增加变化越明显;失效扣件和隔振器的中心在浮置板端部比其在浮置板中部的影响大。  相似文献   

12.
现场调查某地铁线路上普通短轨枕、先锋扣件和钢弹簧浮置板三种轨道的钢轨波磨特征,并分别进行振动测试,研究钢轨存在波磨时,三种轨道结构的振动特性及减振效果。结果表明:三种轨道结构都是内轨波磨明显,外轨表面不平顺幅值相比内轨都很小,可以忽略不计其影响;波磨主波长频率成分很容易在轨道各零部件(包括隧道壁)振动中激发出来,并且会引起较大幅值的振动;在4 Hz~200 Hz频率范围内,波磨激励下的减振型轨道依然具有良好的减振性能,但是与其最初设计用于的减振效果相比,有明显的下降;先锋扣件轨道短波长波磨会削减隧道壁在高频段的减振效果;钢弹簧浮置板轨道的波磨幅值显著,虽然对其隧道壁的减振效果影响不明显,但是会造成钢轨振动增加。  相似文献   

13.
在苏州轨道交通1号线滨河路至塔园路上行隧道内,采用锤击法分别测试短轨枕断面(III型减振器扣件+短轨枕式整体道床)和长轨枕断面(普通扣件+长轨枕式整体道床)钢轨上激励点至钢轨、轨枕、道床以及隧道侧壁的振动传递。测试结果表明,扣件对于钢轨振动的衰减主要体现在小于100 Hz的低频段,而轨枕对频率大于100 Hz的振动有相对好的衰减效果。对比两个断面中钢轨测点至道床的传递函数,III型减振器扣件+短轨枕式整体道床具有更好的减振效果,在40 Hz~80 Hz频段的振动峰值衰减10 dB左右。  相似文献   

14.
随着城市轨道交通的快速发展,地铁运行时产生的振动所引起沿线建筑物室内振动与二次结构噪声问题引起人们的广泛关注。基于某城市轨道交通沿线6层居民楼1楼现场测试,对不同扣件工况下地铁沿线敏感建筑物的室内振动与二次结构噪声问题进行测试与分析。研究表明:地铁沿线建筑物室内各振动、噪声测点峰值频率基本一致,在扣件A工况下峰值频率约为63 Hz,替换为刚度较低的扣件B后,峰值频率在40 Hz~50 Hz左右;采用刚度较小的扣件有利于室内振动与二次结构噪声的降低;虽然所测得的不同测点峰值频率一致,但振级和声压级大小有所不同,基本呈现出振级与声压级随着与地铁线路距离的增加而减小的规律。  相似文献   

15.
为探讨钢弹簧刚度和浮置板密度对高架钢弹簧浮置板轨道减振特性的影响规律,构建车辆-浮置板轨道-桥梁耦合模型,从时频域的角度对其进行分析,为钢弹簧浮置板轨道的设计参数的合理选择与组合优化提供理论依据。研究结果表明:在2 Hz~20 Hz范围内浮置板的振动水平随钢弹簧刚度的减小而增大。在16 Hz~125 Hz频率范围内,轨道中心线、翼缘、腹板、梁底的振动水平随着钢弹簧刚度的减小而减小,最大减幅达到13 dB。钢弹簧刚度的变化对传递函数的影响比较明显,弹簧刚度越小,浮置板到桥梁结构的竖向传递函数值越小。综合考虑,在设计浮置板轨道结构时建议将钢弹簧的刚度控制在6×106N/m~8×106N/m。浮置板密度的增大会在一定程度上减小系统的振动水平,实际设计中要合理设置浮置板密度,建议控制在2 800 kg/m3~3 200 kg/m3。  相似文献   

16.
针对在建杭州地铁3号线下穿某文教区工程,根据车辆-轨道耦合动力学理论,分别建立车辆-普通整体道床轨道耦合动力学模型和车辆-钢弹簧浮置板轨道耦合动力学模型。基于赫兹非线性接触关系,实现轮轨间的力平衡和位移协调。利用有限元软件ABAQUS,对两种轨道结构模型的动力响应进行计算,研究轮轨耦合动力相互作用机理和轨道振动源强特性,分析浮置板长度、轨道不平顺、扣件刚度、钢弹簧刚度和行车速度对钢弹簧浮置板轨道动力特性的影响,并对轨道结构参数进行优化。研究成果可为该地铁轨道的减振设计提供科学依据。  相似文献   

17.
基于广州某车辆段的现场实测,分析了列车运行引起试车线、咽喉区、检修线区域的振动特性差异,总结了三类区域振源的衰减规律,并用统计学方法对比各组测试数据的离散特性,最后对车辆段内各区域进行了环境影响评价。研究结果表明:试车线引起地面垂向振动的主要频率为60~80 Hz,咽喉区地面垂向振动主要频率为50~60 Hz,库内检修线地面垂向振动主要频率为20~40 Hz;从各工况Z振级拟合曲线可以得出,试车线列车荷载引起的近地点振源强度最大,咽喉区次之,检修线最小;在咽喉区,相对于采用混凝土轨枕的轨道,采用聚氨酯轨枕的轨道引起地面振动明显增大且衰减较慢,轨道结构及道床应进行减振优化。按照GB 10070-88标准,试车线距振源5 m内的振动超过限值,咽喉区距振源10 m内的振动超过限值,而检修线在2.5 m外区域的振动均满足限值要求。  相似文献   

18.
本文针对减振轨道结构车内振动与噪声比较明显的现象,对国内某一地铁线路不同轨道结构下的车内振动与噪声进行了现场测量与分析。试验结果表明,Z计权方式下的钢弹簧浮置板轨道减振结构的车内垂向与横向振动分别比普通轨道结构高7.46dB和0.57dB,A计权方式下的车内噪声相比增加9.71dB;GJ-32扣件型减振轨道结构的车内垂向与横向振动分别比普通轨道结构高4.94dB和2.88 dB,车内噪声增加8.71dB。通过对试验数据的倍频程和FFT的分析发现,车内的低频噪声主要是出现在钢弹簧轨道结构上,400Hz~700Hz的中频噪声主要出现在GJ-32型减振扣件轨道结构上。由此得出结论,减振轨道结构是导致车内振动与噪声异常的一个重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号