共查询到13条相似文献,搜索用时 0 毫秒
1.
Abstract. The restricted likelihood ratio test, RLRT, for the autoregressive coefficient in autoregressive models has recently been shown to be second-order pivotal when the autoregressive coefficient is in the interior of the parameter space and so is very well approximated by the distribution. In this article, the non-standard asymptotic distribution of the RLRT for the unit root boundary value is obtained and is found to be almost identical to that of the in the right tail. Together, these two results imply that the distribution approximates the RLRT distribution very well even for near unit root series and transitions smoothly to the unit root distribution. 相似文献
2.
The effects of order misspecification in nonstationary autoregressive time series estimations are investigated. The true process is assumed to be stationary if differenced. The ordinary least squares estimator is shown to be weakly convergent and its probability limit is derived. Expressions for the dominating terms of the prediction error and of the prediction mean squared error are derived. Using the expressions and Monte Carlo simulations, we compare prediction errors in the misspecified models based on the observation series and those based on the differenced series. 相似文献
3.
The space time bilinear (STBL) model is a special form of a multiple bilinear time series that can be used to model time series which exhibit bilinear behaviour on a spatial neighbourhood structure. The STBL model and its identification have been proposed and discussed by Dai and Billard (1998 ). The present work considers the problem of parameter estimation for the STBL model. A conditional maximum likelihood estimation procedure is provided through the use of a Newton–Raphson numerical optimization algorithm. The gradient vector and Hessian matrix are derived together with recursive equations for computation implementation. The methodology is illustrated with two simulated data sets, and one real-life data set. 相似文献
4.
Testing for a single autoregressive unit root in an autoregressive moving-average (ARMA) model is considered in the case when data contain missing values. The proposed test statistics are based on an ordinary least squares type estimator of the unit root parameter which is a simple approximation of the one-step Newton–Raphson estimator. The limiting distributions of the test statistics are the same as those of the regression statistics in AR(1) models tabulated by Dickey and Fuller (Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc . 74 (1979), 427–31) for the complete data situation. The tests accommodate models with a fitted intercept and a fitted time trend. 相似文献
5.
The so-called innovations form of the likelihood function implied by a stationary vector autoregressive-moving average model is considered without directly using a state–space representation. Specifically, it is shown in detail how to compute the exact likelihood by an adaptation to the multivariate case of the innovations algorithm of Ansley (1979 ) for univariate models. Comparisons with other existing methods are also provided, showing that the algorithm described here is computationally more efficient than the fastest methods currently available in many cases of practical interest. 相似文献
6.
Ryota Yabe 《时间序列分析杂志》2012,33(4):533-541
This article derives an asymptotic distribution of Tanaka's score statistic under moderate deviation from a unit root in a moving average model of order one [MA(1)]. The limiting distribution is classified into three types depending on the order of deviation. In the fastest case, the convergence order of the asymptotic distribution continuously changes from the invertible process to the unit root one. In the slowest case, the limiting distribution coincides with one in the invertible process in the distribution sense. This implies that they share a common asymptotic property. The limiting distribution in the intermediate case has the boundary property between the fastest case and the slowest one. 相似文献
7.
In this paper we consider time series models belonging to the autoregressive (AR) family and deal with the estimation of the residual variance. This is important because estimates of the variance are involved in, for example, confidence sets for the parameters of the model, estimation of the spectrum, expressions for the estimated error of prediction and sample quantities used to make inferences about the order of the model. We consider the asymptotic biases for moment and least squares estimators of the residual variance, and compare them with known results when available and with those for maximum likelihood estimators under normality. Simulation results are presented for finite samples 相似文献
8.
Abstract. In this article, we extend the earlier work of Freeland and McCabe [Journal of time Series Analysis (2004) Vol. 25, pp. 701–722] and develop a general framework for maximum likelihood (ML) analysis of higher‐order integer‐valued autoregressive processes. Our exposition includes the case where the innovation sequence has a Poisson distribution and the thinning is binomial. A recursive representation of the transition probability of the model is proposed. Based on this transition probability, we derive expressions for the score function and the Fisher information matrix, which form the basis for ML estimation and inference. Similar to the results in Freeland and McCabe (2004) , we show that the score function and the Fisher information matrix can be neatly represented as conditional expectations. Using the INAR(2) specification with binomial thinning and Poisson innovations, we examine both the asymptotic efficiency and finite sample properties of the ML estimator in relation to the widely used conditional least squares (CLS) and Yule–Walker (YW) estimators. We conclude that, if the Poisson assumption can be justified, there are substantial gains to be had from using ML especially when the thinning parameters are large. 相似文献
9.
Abstract. Quasi‐likelihood ratio tests for autoregressive moving‐average (ARMA) models are examined. The ARMA models are stationary and invertible with white‐noise terms that are not restricted to be normally distributed. The white‐noise terms are instead subject to the weaker assumption that they are independently and identically distributed with an unspecified distribution. Bootstrap methods are used to improve control of the finite sample significance levels. The bootstrap is used in two ways: first, to approximate a Bartlett‐type correction; and second, to estimate the p‐value of the observed test statistic. Some simulation evidence is provided. The bootstrap p‐value test emerges as the best performer in terms of controlling significance levels. 相似文献
10.
Abstract. This paper gives a procedure for evaluating the Fisher information matrix for a general multiplicative seasonal autoregressive moving average time‐series model. The method is based on the well‐known integral specification of Whittle [Ark. Mat. Fys. Astr. (1953) vol. 2. pp. 423–434] and leads to a system of linear equations, which is independent of the seasonal period and has a closed solution. It is shown to be much simpler, in general, than the method of Klein and Mélard [Journal of Time Series Analysis (1990) vol. 11, pp. 231–237], which depends on the seasonal period. It is also shown that the nonseasonal method of McLeod [Biometrika (1984) vol. 71, pp. 207–211] has the same basic features as that of Klein and Mélard. Explicit solutions are obtained for the simpler nonseasonal and seasonal models in common use, a feature which has not been attempted with the Klein–Mélard or the McLeod approaches. Several illustrations of these results are discussed in detail. 相似文献
11.
Asymptotics for the Conditional‐Sum‐of‐Squares Estimator in Multivariate Fractional Time‐Series Models
下载免费PDF全文

Morten Ørregaard Nielsen 《时间序列分析杂志》2015,36(2):154-188
This article proves consistency and asymptotic normality for the conditional‐sum‐of‐squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time‐series models. The model is parametric and quite general and, in particular, encompasses the multivariate non‐cointegrated fractional autoregressive integrated moving average (ARIMA) model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter values, for which the objective function does not converge uniformly in probability, thus making the proof much more challenging than usual. The neighbourhood around the critical point where uniform convergence fails is handled using a truncation argument. 相似文献
12.
Regularity conditions are given for the consistency of the Poisson quasi‐maximum likelihood estimator of the conditional mean parameter of a count time series model. The asymptotic distribution of the estimator is studied when the parameter belongs to the interior of the parameter space and when it lies at the boundary. Tests for the significance of the parameters and for constant conditional mean are deduced. Applications to specific integer‐valued autoregressive (INAR) and integer‐valued generalized autoregressive conditional heteroscedasticity (INGARCH) models are considered. Numerical illustrations, Monte Carlo simulations and real data series are provided. 相似文献
13.
We consider a zero mean discrete time series, and define its discrete Fourier transform (DFT) at the canonical frequencies. It can be shown that the DFT is asymptotically uncorrelated at the canonical frequencies if and only if the time series is second‐order stationary. Exploiting this important property, we construct a Portmanteau type test statistic for testing stationarity of the time series. It is shown that under the null of stationarity, the test statistic has approximately a chi‐square distribution. To examine the power of the test statistic, the asymptotic distribution under the locally stationary alternative is established. It is shown to be a generalized non‐central chi‐square, where the non‐centrality parameter measures the deviation from stationarity. The test is illustrated with simulations, where is it shown to have good power. 相似文献