首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The I domain of lymphocyte function-associated antigen (LFA)-1 contains an intercellular adhesion molecule (ICAM)-1 and ICAM-3 binding site, but the relationship of this site to regulated adhesion is unknown. To study the adhesive properties of the LFA-1 I domain, we stably expressed a GPI-anchored form of this I domain (I-GPI) on the surface of baby hamster kidney cells. I-GPI cells bound soluble ICAM-1 (sICAM-1) with a low avidity and affinity. Flow cell experiments demonstrated a specific rolling interaction of I-GPI cells on bilayers containing purified full length ICAM-1 or ICAM-3. The LFA-1 activating antibody MEM-83, or its Fab fragment, decreased the rolling velocity of I-GPI cells on ICAM-1-containing membranes. In contrast, the interaction of I-GPI cells with ICAM-3 was blocked by MEM-83. Rolling of I-GPI cells was dependent on the presence of Mg2+. Mn2+ only partially substituted for Mg2+, giving rise to a small fraction of rolling cells and increased rolling velocity. This suggests that the I domain acts as a transient, Mg2+-dependent binding module that cooperates with another Mn2+-stimulated site in LFA-1 to give rise to the stable interaction of intact LFA-1 with ICAM-1.  相似文献   

2.
The cyclic hexapeptide CWLDVC (TBC 772) is an antagonist of alpha4 integrins and a potent inhibitor of lymphocyte interactions with fibronectin, vascular cell adhesion molecule-1, and muscosal vascular addressin cell adhesion molecule-1 (MAdCAM-1). As such, peptide TBC 772 effectively inhibits the activation of freshly isolated human T lymphocytes stimulated with purified vascular cell adhesion molecule-1 coimmobilized with anti-CD3 mAb. The influence of peptide binding on distinct sites of the alpha4beta1 complex was determined by flow cytometry and cellular adhesion assays employing a panel of mAbs. Binding of the alpha4-specific mAb L25 and the beta1-specific mAb 33B6 was not altered by the peptide; however, binding of mAb 19H8, which is specific for a combinatorial epitope of alpha4beta1, was dramatically inhibited. Treatment of lymphocytes with the peptide caused an increase in a ligand-induced epitope on beta1 integrin defined by mAb 15/7. In T cell activation studies using coimmobilized anti-CD3 mAb and the anti-integrin mAbs, the peptide had broader inhibitory activity, suppressing costimulation induced by all the integrin mAbs. The peptide was not generally toxic and was integrin selective in its suppressive activity, as coactivation by ligation of CD3 in conjunction with CD28 or CD26 was not affected. These results suggest that the antagonist peptide CWLDVC can effectively neutralize integrin coactivation systems by a mechanism independent of competitive binding.  相似文献   

3.
CD50 (ICAM-3) has been identified as the third CD11a/CD18 (LFA-1) counter receptor. We investigated the expression and possible role of this molecule in the induction of early and late activation events in human thymocytes. We observed that CD50 expression is acquired by early T cell progenitors (CD34+) and maintained during thymic development, reaching the highest levels in the most mature population of thymocytes (CD3high). Neither basal nor cytokine-induced expression of CD50 was observed on untransformed human thymic epithelial cell lines. Cross-linking of CD50 expressed on the surface of human thymocytes, by using mAbs recognizing epitopes not related to the CD11a binding site, transduced transmembrane signals leading to an increase of intracellular calcium concentration. This calcium mobilization was inhibited when CD50 was co-cross-linked with CD45, suggesting that tyrosine phosphorylation is also involved in CD50 signaling. The same anti-CD50 mAbs that were able to affect intracellular calcium levels were shown to induce CD69 but not CD25 expression on human thymocytes. This effect was preferentially observed on CD3low/CD3high thymocyte subpopulations. Cross-linking of CD50 also significantly increased activation-induced cell death of human thymocytes. These results support the idea that CD50 molecule can play a role in developing functionally mature T lymphocytes.  相似文献   

4.
Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1.  相似文献   

5.
We have investigated the role of the cytoplasmic domains of LFA-1 in binding to ICAM-1 and in postadhesion events. Various truncated and chimeric forms of LFA-1 alpha (CD11a) and beta (CD18) chains were generated and transfected into murine fibroblast TNR-2 cells. Transfected fibroblasts expressing wild-type LFA-1 adhered only weakly to ICAM-1 immobilized on plastic, and phorbol ester pretreatment enhanced this adhesion significantly. In contrast, transfected cells expressing LFA-1 lacking both the alpha and the beta cytoplasmic domains, the beta cytoplasmic domain alone, or GPI-anchored LFA-1 adhered to immobilized ICAM-1 without prior activation. Truncation of the alpha cytoplasmic domain alone resulted in much reduced cell adhesion which could be only weakly upregulated by PMA. The presence of manganese dramatically enhanced the binding to ICAM-1 of LFA-1 lacking the alpha cytoplasmic domain or both cytoplasmic domains, whereas it had relatively little effect on wild-type LFA-1 or the mutant lacking the beta cytoplasmic domain. Soluble LFA-1, generated by phosphatidylinositol-specific phospholipase-C treatment of GPI-anchored LFA-1, was capable of binding ICAM-1+ cells. Although doubly truncated or GPI-anchored LFA-1 mediated cell adhesion to immobilized ICAM-1, cells expressing these mutants, as well as those expressing individual alpha and beta chain truncations, failed to spread out following this adhesion, whereas the wild-type transfectants did so readily. Manganese had no effect on cell spreading. Fluorescent staining of these cells indicated no significant variation in the distribution of LFA-1 on the cell surface. From these results we conclude that (1) cells expressing LFA-1 lacking both the alpha and the beta cytoplasmic domains adhere to ICAM-1 without prior stimulation, indicating the importance of LFA-1 cytoplasmic domains in inside-out signaling, (2) truncation of the alpha cytoplasmic domain alone inhibits cell adhesion by making LFA-1 nonresponsive to inside-out signaling, and (3) both cytoplasmic domains are required for cell spreading following adhesion to immobilized ICAM-1.  相似文献   

6.
Membrane molecules such as CD36 (OKM5), intercellular adhesion molecule-1 (ICAM-1, CD54), gamma interferon-induced protein 10 (gamma-IP10) and IL-1 are induced and/or upregulated in psoriatic epidermis. These molecules have important accessory, trafficking or signalling functions in the immune system and also play a role in the pathophysiology of psoriasis. The relevance of adhesion molecules, CD36 and epidermal IL-1 in psoriasis was studied in vitro in the autologous mixed epidermal cell - T lymphocyte reaction (MECLR). Their level of expression was quantitated in epidermal cell suspensions (ECS) from patients with psoriasis and their function was assessed by blocking with specific mAbs and antisera or by depleting CD36+ cells from the ECS prior to the MECLR. ECS from psoriatic lesions contained increased numbers of CD36+ (23 +/- 12%), ICAM-1(+) (31 +/- 14%) and IL-1(+) (57 +/- 21%) cells. The autologous MECLR was inhibited in samples from all patients by mAb to CD2 (LFA-2), CD11a (LFA-1alpha), CD18 (LFA-1beta), ICAM-1, CD58 (LFA-3) and an antiserum to IL-1beta. Thus, adhesion molecules facilitate inflammation in psoriasis not only via adhesion and recruitment of T lymphocyte in psoriatic lesions, but also via activation of T cells. Furthermore CD36 molecules on psoriatic epidermal cells do not costimulate autologous T lymphocytes in psoriasis. The observed costimulatory function of IL-1beta in the MECLR emphasizes its relevance in psoriasis.  相似文献   

7.
Recently we reported that monocyte migration through a barrier of human synovial fibroblasts (HSF) is mediated by the CD11/CD18 (beta2) integrins, and the beta1 integrins VLA-4 and VLA-5 on monocytes. Here we investigated in parallel the role of beta2 integrin family members, LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) on monocytes, and the immunoglobulin supergene family members, ICAM-1 and ICAM-2 on HSF and on human umbilical vein endothelial cells (HUVEC), in monocyte migration through HSF and HUVEC monolayers. Using function blocking monoclonal antibodies (mAb), when both VLA-4 and VLA-5 on monocytes were blocked, treatment of monocytes with mAb to both LFA-1 and to Mac-1 completely inhibited monocyte migration across HSF barriers, although blocking either of these beta2 integrins alone had no effect on migration, even when VLA-4 and VLA-5 were blocked. This indicates that optimal beta2 integrin-dependent monocyte migration in synovial connective tissue may be mediated by either LFA-1 or Mac-1. Both ICAM-1 and ICAM-2 were constitutively expressed on HSF and on HUVEC, although ICAM-2 was only minimally expressed on HSF. Based on results of mAb blockade, ICAM-1 appeared to be the major ligand for LFA-1-dependent migration through the HSF. In contrast, both ICAM-1 and ICAM-2 mediated LFA-1-dependent monocyte migration through HUVEC. However, neither ICAM-1 nor ICAM-2 was required for Mac-1 -dependent monocyte migration through either cell barrier, indicating that Mac-1 can utilize ligands distinct from ICAM-1 and ICAM-2 on HSF and on HUVEC during monocyte transmigration.  相似文献   

8.
The constitutive high expression of CD50 (ICAM-3) on resting leukocytes, coupled with the observation that CD50 is the primary LFA-1 ligand on resting T cells, suggests that CD50 may be an important LFA-1 ligand in the initiation of the immune/inflammatory response. CD50 mAbs have been reported to increase homotypic adhesion of lymphocytes, and lymphocyte adhesion to HUVEC and extracellular matrix proteins. In this study, the effects of CD50 mAbs on neutrophil activation were examined. CD50 mAbs were found to inhibit neutrophil adhesion induced by FMLP and 12-O-tetradecanoyl-phorbol-13-acetate to resting and TNF-activated HUVEC. CD50 mAbs also inhibited neutrophil adhesion stimulated by CD66a, CD66b, CD66c, and CD66d mAbs to HUVEC. CD50 mAbs inhibited the up-regulation of CD11b/CD18 to the neutrophil surface, and the down-regulation of surface CD62L expression. The potential contribution of src family kinases to the previously described tyrosine kinase activity associated with CD50 in neutrophils was also examined. hck and lyn were found to account for much of the tyrosine kinase activity associated with CD50 in neutrophils. The data indicate that CD50 in neutrophils functions not only as a potential ligand for LFA-1, but also regulates the surface expression and activity of CD11b/CD18 and CD62L. In contrast to the effects in lymphocytes, CD50 appears to function as a negative regulator of neutrophil activation.  相似文献   

9.
By using the model of acute injury caused by intrapulmonary deposition of IgG immune complexes, blocking mAb to CD11a, CD11b, L-selectin, and intercellular adhesion molecule-1 (ICAM-1) were administered either i.v. or intratracheally (i.t.). The effects of these interventions were assessed according to lung injury, lung content of myeloperoxidase (MPO), TNF-alpha, and cellular content in bronchoalveolar lavage (BAL) fluids, and up-regulation of pulmonary vascular ICAM-1. In animals treated i.v. with Abs to CD11a, L-selectin, or ICAM-1 lung injury was significantly attenuated in parallel with reduced lung content of MPO. Under similar conditions, treatment with anti-CD11b had no effect. However, when the same mAb were administered i.t., anti-CD11a and anti-L-selectin were without protective effects, whereas i.t. administered anti-CD11b and anti-ICAM-1 were each highly protective. The protective effects of anti-CD11b were related to profound reductions in BAL levels of TNF-alpha, pulmonary vascular up-regulation of ICAM-1, and lung content of MPO. The protective effects of i.t.-administered anti-ICAM-1 were not associated with reduced BAL levels of TNF-alpha. Protective effects of mAb were also reflected in reductions of retrievable neutrophils in BAL fluids. mAb to rat CD11b and CD18 but not to rat CD11a suppressed in vitro production of TNF-alpha by immune complex-stimulated rat alveolar macrophages. The mAb did not reduce NO2-/NO3- generation in stimulated macrophages but all mAb (except anti-ICAM-1) reduced O2- responses in macrophages. These data suggest a compartmentalized role for adhesion molecules in lung inflammatory injury after intraalveolar deposition of IgG immune complexes, with CD11a, L-selectin, and ICAM-1 being important in the vascular compartment for neutrophil recruitment, whereas in the alveolar compartment CD11b and ICAM-1 (but not CD11a and L-selectin) seem to play key roles.  相似文献   

10.
ICAM-3 (CD50), a member of the Ig superfamily, is a major ligand for the leukocyte integrin LFA-1 (CD11a/CD18). This interaction represents one of several Ig superfamily/integrin ligand-receptor pairs that have been described to date. ICAM-3 is highly expressed on resting leukocytes and on APCs. In addition to an adhesive function, ICAM-3 can act as a signal-transducing molecule on T cells, providing a costimulatory signal for cell proliferation. Eighteen point mutations in ICAM-3 were generated, and residues important for binding of functional blocking Abs were identified. Mutation of seven of the residues reduced or abrogated adhesion to LFA-1, including three residues that are located on strand A of the ABED face of domain 1. In contrast, extensive mutagenesis analysis of ICAM-1 has shown that only residues on the GFC face interact with LFA-1. Our results provide evidence for a more extensive binding interface between ICAM-3 and LFA-1 than has previously been described. ICAM-3 appears to be unique among the ICAMs in utilizing residues on both faces of domain 1 for interaction with its ligand LFA-1.  相似文献   

11.
The Gal beta(1-3)GalNAc-binding lectin jacalin is known to specifically induce the proliferation of human CD4+ T lymphocytes in the presence of autologous monocytes and to interact with the CD4 molecule and block HIV-1 infection of CD4+ cells. We further show that jacalin-induced proliferation is characterized by an unusual pattern of T cell activation and cytokine production by human peripheral blood mononuclear cells (PBMC). A cognate interaction between T cells and monocytes was critical for jacalin-induced proliferation, and human recombinant interleukin (IL)-1 and IL-6 did not replace the co-stimulatory activity of monocytes. Blocking studies using monoclonal antibodies (mAb) point out the possible importance of two molecular pathways of interaction, the CD2/LFA-3 and LFA-1/ICAM-1 pathways. One out of two anti-CD4 mAb abolished jacalin responsiveness. Jacalin induced interferon-gamma and high IL-6 secretion, mostly by monocytes, and no detectable IL-2 synthesis or secretion by PBMC. In contrast, jacalin-stimulated Jurkat T cells secreted IL-2. CD3- Jurkat cell variants failed to secrete IL-2, suggesting the involvement of the T cell receptor/CD3 complex pathway in jacalin signaling. IL-2 secretion by CD4- Jurkat variant cells was delayed and lowered. In addition to CD4, jacalin interacts with the CD5 molecule. Jacalin-CD4 interaction and the proliferation of PBMC, as well as IL-2 secretion by Jurkat cells were inhibited by specific jacalin-competitive sugars.  相似文献   

12.
We raised mAbs to whole L5178Y leukemia/lymphoma (LL) cells to identify adhesion proteins involved in adherence between LL cells and marrow stromal cells. One mAb, 4C, and its subclones 4C.1 and 4C.2 inhibited adherence of L5178Y LL cells to MLT. a nontransformed murine marrow stromal cell line. These MoAbs are directed against CD45RA. Control anti-CD45 mAbs and isotype mAbs were non-inhibitory. Other anti-CD45 mAbs, M1/9.3, RA3-3A1/6.1 and RA3-2C2/1 do not compete with mAb 4C.1 for binding to the L5178Y cell surface, but mAb 4C.1 competes for binding of mAb RA3-2C2/1. Effects of mAb 4C on tyrosine-phosphatase activity of CD45 in L5178Y cells are minimal, suggesting direct involvement of CD45 as an adhesion protein.  相似文献   

13.
The murine CD18 monoclonal antibody (mAb) M18/2 was reported to inhibit lymphoma metastasis [Zahalka, M. A. et al. (1993) J. Immunol. 150, 4466]. To identify the pathways potentially blocked, we studied the effects of M18/2 compared with two new mAb against murine CD18, GAME-46, and -245. Whereas the GAME mAb blocked most Mac-1-mediated interactions, M18/2 had no effect, or even stimulated. The same was true for adhesion of LFA-1 to ICAM-1. To test effects on interactions with different ICAMs, we used L cells transfected with human ICAM-1, -2, and -3. As previously described, mouse LFA-1 does not bind to human ICAM-1 but we show here that mouse LFA-1 does bind to human ICAM-2 and -3. Again, the GAME mAb blocked completely, but M18/2 did not. These results indicate that the LFA-1 binding sites for ICAM-1 and ICAM-2 and -3, although in close vicinity, are distinct. Furthermore, effects of M18/2 on metastasis cannot be ascribed to blocking of any known beta2-integrin activity.  相似文献   

14.
15.
The identification of all CD28/CTLA-4 counterreceptors is critical to our understanding of this pivotal pathway of T cell activation. Clouding our understanding has been the reported discrepancies in expression and function of the B7-1 (CD80) molecule based upon the use of the BB1 vs other anti-B7-1 mAbs. To resolve this issue, we have cloned a BB1-binding molecule from the BB1+B7-1(-) NALM-6 pre-B cell line. Here, we demonstrate that this BB1-binding molecule is identical to the cell surface form of CD74 (MHC class II-associated invariant chain). CD74-transfected cells bound the BB1 mAb but not other anti-CD80 mAbs, CD28-Ig, or CTLA4Ig. Absorption and blocking experiments confirmed the reactivity of BB1 mAb with CD74. A region of weak homology was identified between CD74 and the region of B7-1 encoding the BB1 epitope. Therefore, the BB1 mAb binds to a protein distinct from B7-1, and this epitope is also present on the B7-1 protein. Many of the puzzling observations in the literature concerning the expression of human B7-1 are resolved by an understanding that BB1 staining is the summation of CD74 plus B7-1 expression. This observation requires the field to reconsider studies using BB1 mAb in the analysis of CD80 expression and function.  相似文献   

16.
Recognition by integrin proteins on the cell surface regulates the adhesive interactions between cells and their surroundings. The structure of the 'I' domain that is found in some but not all integrins, has been determined. However, the only integrin ligands for which structures are known, namely fibronectin and VCAM-1, are recognized by integrins that lack I domains. The intercellular adhesion molecules ICAM-1, 2 and 3 are, like VCAM-1, members of the immunoglobulin superfamily (IgSF), but they are recognized by an I domain-containing integrin, lymphocyte-function-associated antigen 1 (LFA-1, or CD11a/CD18). Here we present the crystal structure of the extracellular region of ICAM-2. The glutamic acid residue at position 37 is critical for LFA-1 binding and is proposed to coordinate the Mg2+ ion in the I domain; this Glu 37 is surrounded by a relatively flat recognition surface and lies in a beta-strand, whereas the critical aspartic acid residue in VCAM-1 and fibronectin lie in protruding loops. This finding suggests that there are differences in the architecture of recognition sites between integrins that contain or lack I domains. A bend between domains 1 and 2 of ICAM-2 and a tripod-like arrangement of N-linked glycans in the membrane-proximal region of domain 2 may be important for presenting the recognition surface to LFA-1. A model of ICAM-1 based on the ICAM-2 structure provides a framework for understanding its recognition by pathogens.  相似文献   

17.
Activation of human natural killer (NK) cells involves sequential events including cytokine production and induction of cell surface molecules, resulting in the enhancement of cytolytic activity. To delineate the activation process of NK cells, we generated murine monoclonal antibodies (mAbs) against YT, a human large granular lymphocyte/natural killer (LGL/NK) cell line. Among the mAbs reactive with YT cells, one mAb, termed 2B9, was noted because of the lack of reactivity with most of the human T- and B-cell lines tested. In fresh peripheral blood mononuclear cells (PBMC), however, the majority of cells expressing this antigen (Ag) were T cells but not CD16+ nor CD56+ NK cells. Since YT cells showed an activated phenotype expressing interleukin-2 (IL-2) receptor alpha chain, we examined whether 2B9 Ag could be induced on normal human peripheral blood NK cells by cytokines known to activate NK cells. The 2B9 Ag was induced on NK cells by IL-2, IL-12 or IL-15 while no induction was observed by interferon-gamma (IFN-gamma). Biochemical analysis showed that anti-2B9 mAb recognized a 115 kDa molecule in YT cells. A cDNA clone encoding the 2B9 Ag was isolated from a cDNA expression library of YT cells and its sequence was identical to CD26 cDNA although it was not of full length. Transient expression of the 2B9 cDNA on COS-7 cells revealed that this cDNA encodes the antigenic epitope(s) recognized by anti-2B9 mAb as well as Ta1, an anti-CD26 mAb. These results showed that the 2B9 Ag is identical to CD26, and demonstrated that CD26 is an activation antigen on CD16+ CD56+ NK cells inducible by IL-2, IL-12 or IL-15.  相似文献   

18.
We evaluated the relative contribution of ICAM-1 and ICAM-2, known ligands on endothelium for LFA-1 and Mac-1, in spontaneous neutrophil (PMN) transendothelial migration (TEM) across IL-1-activated HUVEC monolayers or TEM induced by C5a or IL-8 across unstimulated HUVEC grown on polycarbonate filters. Adhesion blocking mAb to ICAM-1 [R6.5 F(ab)2] or ICAM-2 [CBR IC2/2 F(ab)2] tended to inhibit TEM under each condition but, in general, inhibition was significant only with both ICAM-1 and ICAM-2 blockade. mAb to LFA-1 partially inhibited migration to C5a or IL-8 across unstimulated HUVEC and inhibition was not altered by additional treatment of HUVEC with mAbs to ICAM-1 and -2. In contrast, with IL-1 HUVEC, mAb to ICAM-1 significantly inhibited this LFA-1-independent TEM. mAb to Mac-1 alone partially inhibited TEM and, when combined with mAb to LFA-1, migration was almost completely blocked with all TEM conditions tested. The contribution of alternate ligands for Mac-1 in mediating Mac-1-dependent but ICAM-1/-2-independent C5a-induced TEM was examined using anti-LFA-1-treated PMN and anti-ICAM-treated resting HUVEC. Addition of RGD peptides, fibronectin, fibrinogen, heparins, collagens alone or in combination, even to heparinase-treated HUVEC, did not inhibit this Mac-1-mediated PMN TEM. The results indicate that: (1) LFA-1 mediates PMN TEM primarily by interaction with ICAM-1 and ICAM-2; (2) ICAM-2 may function in concert with ICAM-1 in this role, especially on unstimulated endothelium, and (3) Mac-1 on PMN also plays a major role in TEM and can utilize yet to be identified ligands distinct from ICAM-1 or -2, especially on unstimulated endothelium.  相似文献   

19.
The equine homologue of the leucocyte integrin LFA-1 (CD11a/CD18) has been characterized using a panel of four monoclonal antibodies (mAbs). The antibodies labelled almost all leukocytes, thymocytes and lymph node cells from normal horses, and immunoprecipitated two noncovalently associated polypeptides with molecular weights of 180 kDa and 100 kDa, respectively. The antigen recognized by one mAb could be precipitated by another in this cluster in a sequential immunoprecipitation assay. The mAbs, however, did not block the activities on lymphocyte function of one another. A mAb to the beta subunit of human LFA-1 cross-reacted with equine LFA-1, but an antibody to its alpha subunit did not, suggesting that the beta subunit of the leukocyte integrin may be more highly-conserved. Functionally, H20A and a human CD18 antibody (MHM23) inhibited phorbol ester-mediated homotypic lymphocyte aggregation, whereas mAb CZ3.2 induced rather than inhibited the homotypic cell aggregation. The formation of lymphocyte aggregates induced by CZ3.2 was not blocked by the inhibitory antibodies H20A or MHM23. CZ3.1 seemed to have little inducible or inhibitory effects on homotypic cell aggregation. The mAb CZ3.1 defined a unique LFA-1 determinant present on granulocytes, but absent on lymphocytes in members of an extended horse family, in contrast to the other antibodies which labelled both granulocytes and lymphocytes from these animals. In all other horses tested, no differences in reactivity of CZ3.1 and the other LFA-1 antibodies were observed when the antibodies were tested on lymphocytes or granulocytes. Our results indicate that common epitopes are shared' between human and equine LFA-1, and that the described panel of monoclonal antibodies identifies distinct determinants present on the equine LFA-1 molecule. The following monoclonal antibodies used in this study were given official workshop designations at the Second International Workshop on Equine Leukocyte Antigens (Lunn et al., 1998) CZ3.1 (Cor) = W45; CZ3.2 (Cor) = W77.  相似文献   

20.
Using a solid phase assay, we show that isolated LFA-1 I domain binds ICAM-1 in a Mg2+-dependent manner and is blocked by anti-I domain monoclonal antibodies. This activity mirrors that of the intact receptor (Dransfield, I., Caba?as, C., Craig, A., and Hogg, N. (1992) J. Cell Biol. 116, 219-226) and suggests that the I domain controls divalent cation-dependent receptor function. In ICAM-1, domain 1 residues Glu-34 and Gln-73 have been identified as critical for binding of LFA-1 as an intact receptor (Staunton, D. E., Dustin, M. L., Erickson, H. P., and Springer, T. A. (1990) Cell 61, 243-254). For the first time, we show that isolated I domain binds to domain 1 of ICAM-1 and that this interaction is inhibited partially by mutation of Glu-34 but not by Gln-73. The anti-ICAM-1 monoclonal antibody RR1/1, which maps to Gln-73 (Staunton, D. E., Dustin, M. L., Erickson, H. P., and Springer, T. A. (1990) Cell 61, 243-254), enhances I domain binding, suggesting potential allosteric control or coordinate binding by this region. Finally, I domain binding inhibited by Glu-34 ICAM-1 mutation correlates with divalent cation dependence, indicating that this residue might be in direct contact with the metal ion-dependent adhesion site. Thus, we describe the interaction between the LFA-1 I domain and ICAM-1, an event that controls the function of the intact receptor but includes only part of the complete ligand binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号