首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
In the partial oxidation of tar derived from the pyrolysis of cedar wood, the effect of H2S addition was investigated over non-catalyst, steam reforming Ni catalyst, and Rh/CeO2/SiO2 using a fluidized bed reactor. In the non-catalytic gasification, the product distribution was not influenced by the presence of H2S. Steam reforming Ni catalyst was effective for the tar removal without H2S addition, however, the addition of H2S deactivated drastically. In contrast, Rh/CeO2/SiO2 exhibited higher and more stable activity than the Ni catalyst even under the presence of high concentration of H2S (280 ppm). On the Ni catalyst, the adsorption of sulfur was observed by XPS and Ni species was oxidized during the partial oxidation of tar. In the case of Rh/CeO2/SiO2, the adsorption of sulfur was below the detection limit of XPS. This can be related to the self-cleaning of catalyst surface during the circulation in the fluidized bed reactor for the partial oxidation of tar derived from cedar pyrolysis.  相似文献   

2.
Catalyst performance of NiO–MgO solid solution catalysts for methane reforming with CO2 and H2O in the presence of oxygen using fluidized and fixed bed reactors under atmospheric and pressurized conditions was investigated. Especially, methane and CO2 conversion in the fluidized bed reactor in methane reforming with CO2 and O2 was higher than those in the fixed bed reactor over Ni0.15Mg0.85O catalyst under 1.0 MPa. In contrast, conversion levels in the fluidized and fixed bed reactor were almost the same over MgO-supported Ni and Pt catalysts. It is suggested that the promoting effect of catalyst fluidization on the activity is related to the catalyst reducibility. On a catalyst with suitable reducibility, the oxidized and deactivated catalyst can be reduced with the produced syngas and the reforming activity regenerates in the fluidized bed reactor during the catalyst fluidization. In addition, the catalyst fluidization inhibited the carbon deposition.  相似文献   

3.
Activity test of Ni/Al2O3, Ni/ZrO2, Ni/TiO2, Ni/CeO2 and Ni/MgO catalysts in the partial oxidation (POT) and steam reforming of tar (SRT) derived from the pyrolysis of cedar wood was performed. In these activity tests, the order of the performance in both reactions was similar. Catalyst characterization was also carried out by means of H2 adsorption, TPR and XRD. From the combination of catalyst characterization with the results of the activity tests, it is suggested that the conversion of tar in POT and SRT is mainly controlled by the number of surface Ni metal. In addition, Ni/CeO2 showed smaller amount of coke than other catalysts in the POT and SRT. From the TGA profiles of active carbon mixed with catalysts, it is found that Ni/CeO2 promoted the reaction of active carbon with O2 and steam. The function of the fluidized bed reactor in the POT with respect to coke and tar amount was discussed.  相似文献   

4.
In the steam gasification of biomass, the additive effect of noble metals such as Pt, Pd, Rh and Ru to the Ni/CeO2/Al2O3 catalyst was investigated. Among these noble metals, the addition of Pt was most effective even when the loading amount of added Pt was as small as 0.01 wt.%. In addition, the catalyst characterization suggests the formation of the Pt–Ni alloy over the Pt/Ni/CeO2/Al2O3.  相似文献   

5.
Reforming of methane with carbon dioxide into syngas over Ni/γ-Al2O3 catalysts modified by potassium, MnO and CeO2 was studied. The catalysts were prepared by impregnation technique and were characterized by N2 adsorption/desorption isotherm, BET surface area, pore volume, and BJH pore size distribution measurements, and by X-ray diffraction and scanning electron microscopy. The performance of these catalysts was evaluated by conducting the reforming reaction in a fixed bed reactor. The coke content of the catalysts was determined by oxidation conducted in a thermo-gravimetric analyzer. Incorporation of potassium and CeO2 (or MnO) onto the catalyst significantly reduced the coke formation without significantly affecting the methane conversion and hydrogen yield. The stability and the lower amount of coking on promoted catalysts were attributed to partial coverage of the surface of nickel by patches of promoters and to their increased CO2 adsorption, forming a surface reactive carbonate species. Addition of CeO2 or MnO reduced the particle size of nickel, thus increasing Ni dispersion. For Ni–K/CeO2–Al2O3 catalysts, the improved stability was further attributed to the oxidative properties of CeO2. Results of the investigation suggest that stable Ni/Al2O3 catalysts for the carbon dioxide reforming of methane can be prepared by addition of both potassium and CeO2 (or MnO) as promoters.  相似文献   

6.
Catalytic performance of Ni/CeO2/Al2O3 catalysts prepared by a co-impregnation and a sequential impregnation method in steam gasification of real biomass (cedar wood) was investigated. Especially, Ni/CeO2/Al2O3 catalysts prepared by the co-impregnation method exhibited higher performance than Ni/Al2O3 and Ni/CeO2/Al2O3 prepared by the sequential impregnation method, and the catalysts gave lower yields of coke and tar, and higher yields of gaseous products. The Ni/CeO2/Al2O3 catalysts were characterized by thermogravimetric analysis, temperature-programmed reduction with H2, transmission electron microscopy and extended X-ray absorption fine structure, and the results suggested that the interaction between Ni and CeO2 became stronger by the co-impregnation method than that by sequential method. Judging from both results of catalytic performance and catalyst characterization, it is found that the intimate interaction between Ni and CeO2 can play very important role on the steam gasification of biomass.  相似文献   

7.
In this contribution, a commercial spherical SiO2 was modified with different amounts of La2O3, and used as the support of Ni catalysts for autothermal reforming of methane in a fluidized-bed reactor. Nitrogen adsorption, XRD and H2-TPR analysis indicated that La2O3-modified SiO2 had higher surface area, strengthened interaction between Ni and support, and improved dispersion of Ni. CO2-TPD found that La2O3 increased the alkalescence of SiO2 and improved the activation of CO2. Coking reaction (via both temperature-programmed surface reaction of CH4 (CH4-TPSR) and pulse decomposition of CH4) disclosed that La2O3 reduced the dehydrogenation ability of Ni. CO2-TPO, O2-TPO (followed after CH4-TPSR) confirmed that only part amount of carbon species derived from methane decomposition could be removed by CO2, and O2 in feed played a crucial role for the gasification of the inactive surface carbons. Ni/xLa2O3-SiO2 (x = 10, 15, 30) possessed high activity and excellent stability for autothermal reforming of methane in a fluidized-bed reactor.  相似文献   

8.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

9.
Ni/Al2O3 aerogel catalysts were synthesized by a sol-gel method combined with a supercritical drying route. The catalytic performances of the catalysts in methane reforming with CO2 were investigated in a quartz micro-reactor. The results indicated that the aerogel catalyst showed higher specific surface area and higher dispersivity of nickel species than those of impregnation catalyst. The excellent catalytic performances and stabilities were achieved over the aerogel catalysts in the fluidized bed reactor. Comprehensive characterization with TG, XRD and FESEM revealed that the aerogel catalyst in the fluidized bed had much lower carbon deposition than that in the fixed bed. The fluidization of the aerogel catalyst greatly improved the contact efficiency of gas-solid phase, which accelerated the gasification of the deposited carbon. In contrast, the deactivation of the aerogel catalyst was caused by the carbon deposition due to the catalyst without moving in the fixed bed. Moreover, decreasing activity of the impregnation catalyst in the fluidized bed resulted from the poor fluidization state of catalyst particles and low effective active sites on surface of catalyst.  相似文献   

10.
H. Wang  J.L. Ye  Y. Liu  Y.D. Li  Y.N. Qin 《Catalysis Today》2007,129(3-4):305-312
In this paper, Co3O4/CeO2 catalysts for steam reforming of ethanol (SRE) were prepared by co-precipitation and impregnation methods. The catalysts prepared by co-precipitation were very active and selective for SRE. Over 10%Co3O4/CeO2 catalyst, ethanol conversion was close to 100% and hydrogen selectivity was about 70% at 450 °C. The catalysts were characterized by X-ray diffraction, temperature-programmed reduction (TPR) and BET surface area measurements. The preparation method influenced the interaction between cobalt and CeO2 evidently. The incorporation of Co ions into CeO2 crystal lattice resulted in weaker interaction between cobalt and ceria on catalyst surface. In comparison with catalysts prepared by impregnation, more cobalt ions entered into CeO2 lattice, and resulted in weaker interaction between active phase and ceria on surface of Co3O4/CeO2 prepared by co-precipitation. Thus, cobalt oxides was easier to be reduced to metal cobalt which was the key active component for SRE. Meanwhile, the incorporation of Co ions into CeO2 crystal lattice was beneficial for resistance to carbon deposition.  相似文献   

11.
The hydrogenation of CO over an Rh vanadate (RhVO4) catalyst supported on SiO2 (RhVO4/SiO2) has been investigated after H2 reduction at 500°C, and the results are compared with those of vanadia-promoted (V2O5–Rh/SiO2) and unpromoted Rh/SiO2 catalysts. The mean size of Rh particles, which were dispersed by the decomposition of RhVO4 after the H2 reduction, was smaller (41 Å) than those (91–101 Å) of V2O5–Rh/SiO2 and Rh/SiO2 catalysts. The RhVO4/SiO2 catalyst showed higher activity and selectivity to C2 oxygenates than the unpromoted Rh/SiO2 catalyst after the H2 pretreatment. The CO conversion of the RhVO4/SiO2 catalyst was much higher than that of V2O5–Rh/SiO2 catalyst, and the yield of C2 oxygenates increased. We also found that the RhVO4/SiO2 catalyst can be regenerated by calcination or O2 treatment at high temperature after the reaction.  相似文献   

12.
The extent of Rh–niobia interaction in niobia-supported Rh (Rh/Nb2O5), niobia-promoted Rh/SiO2 (Nb2O5–Rh/SiO2) and RhNbO4/SiO2 catalyst after H2 reduction has been investigated by H2 and CO chemisorption measurements. These catalysts have been applied to selective CO oxidation in H2 (CO+H2+O2) and CO hydrogenation (CO+H2), and the results are compared with those of unpromoted Rh/SiO2 catalysts. It has been found that niobia (NbOx) increases the activity and selectivity for both the reactions.  相似文献   

13.
The CO2 reforming of methane and propane has been compared over two different Ni catalysts: one reference Ni/SiO2 system and a Ni/Mg(Al)O hydrotalcite-derived catalyst, shown previously to display high catalytic stability for long term reforming. By combining the Tapered Element Oscillating Microbalance (TEOM), Temperature Programmed Hydrogenation (TPH), Transmission Electron Microscopy (TEM) and magnetic measurements, the formation of coke and its role on the catalyst activity has been investigated and compared for both hydrocarbons. It was found that Ni/SiO2 and Ni/Mg(Al)O are both more active for methane reforming than for propane reforming. Coke formation is much more pronounced for propane than for methane over both catalysts. However, for both hydrocarbons a much faster carbon formation is observed over the Ni/SiO2 catalyst than over the Ni/Mg(Al)O catalyst. The difference in the rates of coke formation for methane and propane is ascribed in the case of propane to partially dehydrogenated C3 adspecies, which are good coke precursors. The superior stability of the hydrotalcite-derived catalyst is due to the strong interaction of the nickel phase with the support and the capacity of the support to activate CO2 and channel oxygen to the nickel phase.  相似文献   

14.
The effect of fluidized bed reactor in autothermal CO2 reforming of methane over NiO–MgO solid solution catalysts was investigated by comparing with fixed bed reactor. Methane conversion to syngas was drastically enhanced by using a fluidized bed reactor. The catalyst was reduced and oxidized repeatedly in fluidized bed reactor during the reaction. The enhancement of methane conversion is related to the catalyst reducibility.  相似文献   

15.
In general, there are three processes for production of synthesis gas; steam reforming, CO2 reforming and partial oxidation of methane or natural gas. In the present work, we refer to tri-reforming of methane to synthesize syngas with desirable H2/CO ratios by simultaneous oxy-CO2-steam reforming of methane. In this study, we report the results obtained on tri-reforming of methane over the Ni/ZrO2 based catalyst in order to restrain the carbon deposition and to evaluate the catalytic performance. Results of tri-reforming of CH4 by three catalysts (Ni/Ce–ZrO2, Ni/ZrO2 and Haldor Topsoe R67-7H) are showed that the coke on the reactor wall and the surface of catalyst were reduced dramatically. It was found that the weak acidic site, basic site and redox ability of Ce–ZrO2 play an important role in tri-reforming of methane conversion. Carbon deposition depends not only on the nature of support, but also on the oxidant as like steam or oxygen. Therefore, the process optimization by reactant ratios is important to manufacture the synthesis gas from natural gas and carbon dioxide.  相似文献   

16.
Ni/Al_2O_3催化剂是甲烷二氧化碳重整反应制取合成气研究最多、最具应用潜力的一种催化剂。通过对催化剂进行CO_2-TPD研究,考察还原态Ni/Al_2O_3催化剂的CO_2脱附特性。结果表明,浸渍法制备的Ni/Al_2O_3催化剂CO_2脱附曲线呈现双峰,分别在(60~65)℃和(350~380)℃出现高低温两个活性位;高温CO_2吸附量为3.0 cm~3·g~(-1),低温CO_2吸附量为24.0 cm~3·g~(-1)。催化剂的CO_2吸附量与其Ni含量无关。考察选用不同载体的CO_2脱附行为,发现以Al_2O_3为载体的催化剂CO_2吸附量是MgO和SiO_2为载体催化剂的2~4倍,以TiO_2为载体的催化剂几乎不吸附CO_2。  相似文献   

17.
Micro-channel plates with dimension of 1 mm × 0.3 mm × 48 mm were prepared by chemical etching of stainless steel plates followed by wash coating of CeO2 and Al2O3 on the channels. After coating the support on the plate, Pt, Co, and Cu were added to the plate by incipient wetness method. Reaction experiments of a single reactor showed that the micro-channel reactor coated with CuO/CeO2 catalyst was highly selective for CO oxidation while the one coated with Pt-Co/Al2O3 catalyst was highly active for CO oxidation. The 7-layered reactors coated with two different catalysts were prepared by laser welding and the performances of each reactor were tested in large scale of PROX conditions. The multi-layered reactor coated with Pt-Co/Al2O3 catalyst was highly active for PROX and the outlet concentration of CO gradually increased with the O2/CO ratio due to the oxidation of H2 which maintained the reactor temperature. The multi-layered reactor coated with CuO/CeO2 showed lower catalytic activity than that coated with Pt catalyst, but its selectivity was not changed with the increase of O2/CO ratios due to the high selectivity. In order to combine advantages (high activity and high selectivity) of the two individual catalysts (Pt-Co/Al2O3, CuO/CeO2), a serial reactor was prepared by connecting the two multi-layered micro-channel reactors with different catalysts. The prepared serial reactor exhibited excellent performance for PROX.  相似文献   

18.
During the reactions related to oxidative steam reforming and combustion of methane over -alumina-supported Ni catalysts, the temperature profiles of the catalyst bed were studied using an infrared (IR) thermograph. IR thermographical images revealed an interesting result: that the temperature at the catalyst bed inlet is much higher under CH4/H2O/O2/Ar = 20/10/20/50 than under CH4/H2O/O2/Ar = 10/0/20/70; the former temperature is comparable to that over noble metal catalysts such as Pt and Pd. Based on the temperature-programmed reduction and oxidation measurements over fresh and used catalysts, the metallic Ni is recognized at the catalyst bed inlet under CH4/H2O/O2/Ar = 20/10/20/50, although it is mainly oxidized to NiAl2O4 under CH4/H2O/O2/Ar = 10/0/20/70. This result indicates that the addition of reforming gas (CH4/H2O = 10/10) to the combustion gas (CH4/O2 = 10/20) can stabilize Ni species in the metallic state even under the presence of oxygen in the gas phase. This would account for its extremely high combustion activity.  相似文献   

19.
The hydrogenation of CO over mixed oxides (RhVO4, Rh2MnO4) supported on SiO2 has been studied after H2 reduction at 300°C and at 500°C, and the results compared with those of unpromoted Rh/SiO2 catalysts. Rh was more highly dispersed (40 Å) after the decomposition of RhVO4 by the H2 reduction than those of Rh2MnO4/SiO2 and unpromoted Rh/SiO2 catalysts. The activity and the selectivity to C2 oxygenates of the mixed-oxide catalysts after the H2 reduction were higher than those of the unpromoted Rh/SiO2 catalysts, but the activity of the RhVO4/SiO2 catalyst increased more dramatically after the decomposition by the H2 reduction at 300°C, and hence the yield of C2 oxygenates increased. These results suggest that a strong metal–oxide interaction (SMOI) was induced by the decomposition of the mixed oxides after the H2 reduction. The catalytic activity and selectivity were reproduced repeatedly by the calcination and reduction treatments of the spent (used) catalyst because of the regeneration of RhVO4 and redispersion of Rh metal.  相似文献   

20.
汪国辉  刘辉  陈晓蓉  梅华 《工业催化》2014,22(9):709-714
采用等体积浸渍法制备CeO2改性Ni/γ-Al2O3催化剂,通过BET、XRD、H2-TPR和SEM等对催化剂结构及物化性能进行表征,考察Ni-CeO2/γ-Al2O3催化剂对顺酐催化加氢制备丁二酸酐催化性能的影响。结果表明,引入适量CeO2可提高催化剂活性组分Ni的分散度,增加催化剂比表面积,提高催化剂热稳定性。采用负载CeO2质量分数5%的Ni-CeO2/γ-Al2O3催化剂,在反应温度120 ℃、反应压力2.0 MPa和空速0.6 h-1条件下,顺酐转化率为99.5%,丁二酸酐选择性为99.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号