共查询到20条相似文献,搜索用时 15 毫秒
1.
Manuel Belmonte Jose S. Moya Pilar Miranzo 《Journal of the American Ceramic Society》1995,78(6):1661-1667
The sintering behavior of an Al2 O3 compact containing uniformly dispersed Al2 O3 platelets has been investigated. The results reveal a significant decrease in the sintering rate as well as the formation of voids and cracklike defects in the presence of nonsinterable platelets. The addition of a small amount (2 vol%) of tetragonal-ZrO2 particles enhances the sintering rate, increases end-point density (∼99.5% of theoretical density) and prevents formation of sintering defects. 相似文献
2.
3.
4.
The addition of ThO2 to Y2 O3 inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of ThO2 solute at the grain boundaries, causing a decrease in the grain-boundary mobility. The segregation of ThO2 at the grain boundaries can be inferred from the results of the microhardness and grain-growth studies presented. Further evidence for segregation is provided by quenching experiments and surface activity experiments. 相似文献
5.
Initial Sintering and Surface Diffusion in Al2 O3 总被引:1,自引:1,他引:0
6.
Oriented samples of Al2 O3 -ZrO2 (Y2 O3 ) eutectics consisting of an alumina matrix with zirconia dispersoids were grown by directional solidification. Preferred growth directions and epitaxial relations were determined from X-ray and electron diffraction analyses. Imaging of interfaces was performed by high-resolution transmission electron microscopy on oriented platelets. Semicoherent interfaces were observed with faceting along crystallographic planes of both phases. 相似文献
7.
F. A. KRÖGER 《Journal of the American Ceramic Society》1984,67(6):390-392
A defect model proposed to explain the effect of titanium doping on the rate of sintering of Al2 O3 is revised to fit the oxidizing conditions of the experiments. The model accounts for the observed change in sintering rate by a change from rate limitation by ions to rate limitation by electrons, but requires the presence of an unusually large concentration of acceptor impurities in the material. Models similar to the ones originally proposed account for the rate of densification of Al2 O3 :Zr by hot-pressing in vacuo, provided it is extended by including electronics defects. 相似文献
8.
Ziqi Sun Xinwen Zhu Meishuan Li Yanchun Zhou Yoshio Sakka 《Journal of the American Ceramic Society》2009,92(1):54-61
The dispersion of aqueous γ-Y2 Si2 O7 suspensions, which contain only one component but have a complex ion environment, was studied by the introduction of two different polymer dispersants, polyethylenimine (PEI) and polyacrylic acid (PAA). The suspension without any dispersant remains stable in the pH range of 9–11.5 because of electrostatic repulsion, while it is flocculated upon stirring due to the readsorption of hydrolyzed ions on the colloid surface. However, suspensions with 1 dwb% PEI exhibit greater stability in the pH range of 4–11.5. The addition of PEI shifts the isoelectric point (IEP) of the suspensions from pH 5.8 to 10.8. Near the IEP (pHIEP =10.8), the stability of the suspensions with PEI is dominated by the steric effect. When the pH is decreased to acid direction, the stabilization mechanism is changed from steric hindrance to an electrosteric effect little by little. PAA also has the effect of reducing the hydrolysis speed via a "buffer effect" in the basic pH range, but the lack of adsorption between the highly ionized anionic polymer molecules and the negative colloid particle surfaces shows no positive effect on hydrolysis of colloids and on the stabilization of Y2 Si2 O7 suspensions. 相似文献
9.
Mathias Herrmann Hans-Joachim Kleebe Jan Raethel Kerstin Sempf Stefan Lauterbach Mathis M. Müller Iakovos Sigalas 《Journal of the American Ceramic Society》2009,92(10):2368-2372
B6 O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2 O3 can be utilized as an effective sintering additive, similar to the addition of Y2 O3 /Al2 O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2 O3 , Al2 O3 , and Y2 O3 , while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2 , and a strength value of 520 MPa. 相似文献
10.
Koji Tsukuma Kuniyoshi Ueda Kenichi Matsushita Masahiko Shimada 《Journal of the American Ceramic Society》1985,68(2):56-C-
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2 O3 )-Al2 O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2 O3 )/40 wt% Al2 O3 exhibited an extremely high strength, 1000 MPa, at 1000°C. 相似文献
11.
12.
PAUL F. BECHER 《Journal of the American Ceramic Society》1983,66(7):485-488
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2 O3 stabilizer content not only increases the critical fracture toughness (KIC ) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia ≥5 MPa.m1/2 in transformation-toughened ( K IC =8.5 MPa.m1/2 ) composites vs K Ia ≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC =4.5 MPa.m1/2 ). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path. 相似文献
13.
14.
Xinzhang Zhou Vijay Shukla W. Roger Cannon Bernard H. Kear 《Journal of the American Ceramic Society》2003,86(8):1415-1420
Rapidly solidified ZrO2 (Y2 O3 )–Al2 O3 powders were prepared by melting fine-particle aggregates in a high-enthalpy plasma flame and then rapidly quenching them in cold water or on a copper chill plate. To ensure complete melting and homogenization of all the particles before quenching, the water-quenching treatment was often repeated two or even three times. The resulting melt-quenched powders and splats displayed a variety of metastable structures, depending on composition and cooling rate. ZrO2 -rich material developed an extended solid solution phase, whereas eutectic material formed a nanofibrous or amorphous structure. Under high cooling rate conditions, the ZrO2 -rich material developed a nanocomposite structure ( t -ZrO2 +α-Al2 O) directly by melt-quenching, whereas, more typically, such a structure was developed only after postannealing of the as-quenched metastable material. 相似文献
15.
Nithyanantham Thangamani Ashutosh S. Gandhi Vikram Jayaram Atul H. Chokshi 《Journal of the American Ceramic Society》2005,88(10):2696-2701
This study examined pressure consolidation of amorphous Al2 O3 –15 mol% Y2 O3 powders prepared by co-precipitation and spray pyrolysis. The two amorphous powders had similar true densities and crystallization sequences. Uniaxial hot pressing was carried out at 450°–600°C with a moderate pressure of 750 MPa. The co-precipitated powder could be hot pressed to a maximum relative density of 98% and remained amorphous. Pressure adversely affected the densification of the spray-pyrolyzed powder by favoring an early crystallization of γ-Al2 O3 phase at 580°C. Plastic deformation of the amorphous phase is believed to be responsible for the large densification of the amorphous powders. 相似文献
16.
Masashi Yoshimura Tatsuki Ohji Koichi Niihara 《Journal of the American Ceramic Society》1997,80(3):797-799
Effects of oxidation on mechanical properties have been investigated for Y2 O3 /5 vol% SiC nanocomposite. The roomtemperature fracture strength and toughness substantially increased after oxidation around 900–1000°C for 5 h. On the other hand, little improvement was identified for specimens treated in an inert atmosphere under the same conditions. A TEM study of the oxidized specimen surfaces revealed formation of extensive residual strain contours around SiC nanoparticles. The improved strength and toughness could be caused by compressive surface stress, which was generated by volume expansion of the nanoparticles due to oxidation. 相似文献
17.
Koji Tsukuma Kuniyoshi Ueda Masahiko Shimada 《Journal of the American Ceramic Society》1985,68(1):4-C-5
Composites of Al2 O3 and Y2 O3 partially-stabilized ZrO2 were isostatically hot-pressed using submicrometer powders as the starting material. The addition of Al2 O3 resulted in a large increase in bending strength. The average bending strength for a composite containing 20 wt% Al2 O3 was 2400 MPa, and its fracture toughness was 17 MN·w−3/2 相似文献
18.
The dynamic stress intensity factors, which were determined with newly developed bar impact facilities and a new data reduction procedure, for an Al2 O3 ceramic and 29 vol% SiCw /Al2 O3 composite were virtually identical, thus indicating that the short SiC whiskers were ineffective under dynamic fracture. SEM studies revealed five distinct fracture morphologies with increased percentage area of transgranular fracture in both materials with rapid crack propagation. Also, the high dynamic stress intensity factor caused multiple microscopic crack planes to form and then join as the crack advanced. 相似文献
19.
Jingxian Zhang Qiang Xu Mikio Iwasa Feng Ye Dongliang Jiang 《Journal of the American Ceramic Society》2006,89(2):702-705
A new solidifying agent, 4-aminobenzene sulfonic acid (sulfanilic acid), is reported in this paper. The consolidation process and mechanism were followed using on viscoelastic, FTIR, SEM, and Hg porosimetry measurements. It was shown that the Al2 O3 slurries with PAA-Na as dispersant exhibited a high degree of particle stabilization. After the addition of sulfanilic acid, we observed an exponential increase in the storage modulus ( G ') as a function of consolidation time. Correspondingly, Al2 O3 slurries exhibited a transition from a viscous to an elastic state (in 62 min). FTIR analysis indicated that the consolidation process might follow two steps: first, the adsorption of sulfanilic acid on the Al2 O3 particle surface; second, the acid–base interaction between the adsorbed PAA-Na molecules and the sulfanilic acid molecules. This interaction could possibly induce the formation of three-dimensional networks through a bridging or charge neutralization mechanism. The as-consolidated Al2 O3 green samples were homogeneous, with the relative green density being 54.69%. Results showed that it was feasible to introduce sulfanilic acid for the consolidation of Al2 O3 slurries in aqueous media. 相似文献
20.
Nicole R. Harlan Rosa I. Merino José I. Peña Angel Larrea Victor M. Orera Carlos González Pedro Poza Javier LLorca 《Journal of the American Ceramic Society》2002,85(8):2025-2032
Al2 O3 -ZrO2 eutectics containing 0 to 12.2 mol% Y2 O3 (with respect to zirconia) were produced by directional solidification using the laser floating zone (LFZ) method. Processing variables were chosen to obtain homogeneous, colony-free, interpenetrating microstructure for all of the compositional range, optimum from the viewpoint of mechanical properties. The amount of cubic, tetragonal, or monoclinic zirconia phases was determined using a combination of Raman and X-ray diffraction techniques. Monoclinic zirconia was present up to concentrations of 3 mol% Y2 O3 , while the amount of tetragonal zirconia gradually increased with yttria content up to 3 mol%. Cubic zirconia was the only phase detected when the yttria content reached 12 mol%. The residual stresses in alumina were measured using the shift of the ruby R lines. Compressive stresses were isotropic when measured in the samples containing tetragonal and cubic zirconia, while higher tensile, anisotropic stresses were found when monoclinic zirconia was present. They were partially relieved in the eutectic sample without yttria. These results were compared with a thermoelastic analysis based on the self-consistent model. 相似文献