首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is documented that spinal nociceptive transmission receives descending facilitatory and inhibitory modulation from supraspinal structures. The rostral ventral medulla (RVM), including the nucleus raphe magnus (NRM), nuclei reticularis gigantocellularis (NGC) and gigantocellularis pars alpha (NGCalpha), is the major bulbar relay of descending modulatory influences. Pharmacological studies show that facilitation of a spinal nociceptive tail-flick (TF) reflex induced by stimulation in the NGC and NGCalpha is mediated by spinal serotonergic receptors. The present series of experiments provide evidence that activation of spinal serotonergic systems are critical for both induction and maintenance of secondary hyperalgesia induced by subcutaneous injection of formalin into one hindpaw. Subcutaneous injection of formalin produced facilitation of tail withdrawal (mechanical) and the TF reflex (thermal). Facilitatory effects persisted for at least 30 min. Peripheral blockade of the activity by local injection of a hydrophilic lidocaine derivative (QX-314, 5%) into the injected hindpaw abolished both mechanical and thermal facilitation, indicating that peripheral input is important to maintain long-lasting facilitation. Intrathecal application of a serotonergic receptor antagonist methysergide at a dose (64 nmol) which completely blocked descending facilitation produced by electrical- or chemical-stimulation in the NGC and NGCalpha also significantly attenuated or completely abolished facilitation of tail withdrawal and the TF reflex induced by formalin. Methysergide was effective whether the injection was performed before or after the formalin injection. These results suggest that activation of descending facilitatory serotonergic influences by a prolonged noxious stimulation could contribute to secondary hyperalgesia observed at the tail.  相似文献   

2.
The modulatory effects of electrical and chemical (glutamate) stimulation in the rostral ventromedial medulla (RVM) on spinal nociceptive transmission and a spinal nociceptive reflex were studied in rats. Electrical stimulation at a total 86 sites in the RVM in the medial raphe nuclei (n = 54) and adjacent gigantocellular areas (n = 32) produced biphasic (facilitatory and inhibitory, n = 43) or only inhibitory (n = 43) modulation of the tail-flick (TF) reflex. At these 43 biphasic sites in the RVM, facilitation of the TF reflex was produced at low intensities of stimulation (5-25 microA) and inhibition was produced at greater intensities of stimulation (50-200 microA). At 43 sites in the RVM, electrical stimulation only produced intensity-dependent inhibition of the TF reflex. Activation of cell bodies in the RVM by glutamate microinjection reproduced the biphasic modulatory effects of electrical stimulation. At biphasic sites previously characterized by electrical stimulation, glutamate at a low concentration (5 nmol) produced facilitation of the TF reflex; a greater concentration (50 nmol) only inhibited the TF reflex. In electrophysiological experiments, electrical stimulation at 62 sites in the RVM produced biphasic (n = 26), only inhibitory (n = 26), or only facilitatory (n = 10) modulation of responses of lumbar spinal dorsal horn neurons to noxious cutaneous thermal (50 degrees C) or mechanical (75.9 g) stimulation. Facilitatory effects were produced at lesser intensities of stimulation and inhibitory effects were produced at greater intensities of stimulation. The apparent latencies to stimulation-produced facilitation and inhibition, determined with the use of a cumulative sum method and bin-by-bin analysis of spinal neuron responses to noxious thermal stimulation of the skin, were 231 and 90 ms, respectively. The spinal pathways conveying descending facilitatory and inhibitory influences were found to be different. Descending facilitatory influences on the TF reflex were conveyed in ventral/ventrolateral funiculi, whereas inhibitory influences were conveyed in dorsolateral funiculi. The results indicate that descending inhibitory and facilitatory influences can be simultaneously engaged throughout the RVM, including nucleus raphe magnus, and that such influences are conveyed in different spinal funiculi.  相似文献   

3.
We used the tail-flick response of rats to study the role of opioid receptors in illness-induced hyperalgesia. An intraperitoneal injection of lithium chloride (LiCl) produced hyperalgesia that was blocked in a dose-dependent manner by subcutaneous injection of the opioid antagonist naloxone. Neither hyperalgesia nor its blockade by naloxone were due to variations in tail-skin temperature induced by LiCl. Hyperalgesia was also blocked when opioid receptor antagonism was restricted to (a) the periphery, by intraperitoneal administration of the quaternary opioid receptor antagonist naloxone methiodide; (b) the brain, by intracerebroventricular microinjection of naloxone; or (c) the spinal cord, by intrathecal microinjection of naloxone. These results document a pain facilitatory role of opioid receptors in both the peripheral and central nervous systems and are discussed with reference to their analgesic and motivational functions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
Neurotensin has bipolar (facilitatory and inhibitory) effects on pain modulation that may physiologically exist in homeostasis. Facilitation predominates at low (picomolar) doses of neurotensin injected into the rostroventral medial medulla (RVM), whereas higher doses (nanomolar) produce antinociception. SR 48692, a neurotensin receptor antagonist, discriminates between receptors mediating these responses. Consistent with its promotion of pain facilitation, the minimal antinociceptive responses to a 30-pmol dose of neurotensin microinjected into the RVM were markedly enhanced by prior injection of SR 48692 into the site (detected using the tail-flick test in awake rats). SR 48692 had a triphasic effect on the antinociception from a 10-nmol dose of neurotensin. Antinociception was attenuated by femtomolar doses, attenuation was reversed by low picomolar doses (corresponded to those blocking the pain-facilitatory effect of neurotensin) and the response was again blocked, but incompletely, by higher doses. The existence of multiple neurotensin receptor subtypes may explain these data. Physiologically, pain facilitation appears to be a prominent role for neurotensin because the microinjection of SR 48692 alone causes some antinociception. Furthermore, pain-facilitatory (i.e., antianalgesic) neurotensin mechanisms dominate in the pharmacology of opioids; the response to morphine administered either into the PAG or systemically was potentiated only by the RVM or systemic injection of SR 48692. On the other hand, reversal of the enhancement of antinociception occurred under certain circumstances with SR 48692, particularly after its systemic administration.  相似文献   

5.
The neuropeptide cholecystokinin (CCK), via the CCKB receptor, increases behaviors associated with anxiety in laboratory animals and humans. The present experiment assessed the role of endogenous CCKB function in fear-potentiated startle, a test of "anxiety" in rats. The amplitude of the acoustic startle response is potentiated if preceded by a stimulus that has been previously paired with shock. Pretreatment with the CCKB antagonist L-365,260 (0, 0.1, 1.0, and 10.0 mg/kg, IP) did not affect baseline acoustic startle amplitudes, but dose-dependently decreased fear-potentiated startle. These results indicate that the specific attenuation of fear-potentiated startle induced by L-365,260 was not due to a general decrease in motor responsivity. The present findings are consistent with the effects of CCKB antagonists in other tests measuring anxiety in animals.  相似文献   

6.
The sulphated octapeptide C-terminal fragment of cholecystokinin (CCK-8S) is present in high concentration in the mammalian brain, where it acts via two types of receptor denoted CCKA and CCKB. In the dorsal hippocampus, CCK-8S exerts a potent excitatory effect on pyramidal neurons. The present electrophysiological study was undertaken to determine which CCK receptor type mediates this neuronal activation. Using in vivo extracellular unitary recordings of CA3 pyramidal hippocampal neurons, we compared the effect of SNF-8702, a potent selective CCKB receptor agonist, to that of CCK-8S, and assessed the effects of selective CCKA and CCKB antagonists. CCK-8S and SNF-8702, microiontophoretically applied on the same neurons produced a similar degree and pattern of activation. Both CCK-8S- and SNF-8702-induced activations were suppressed by the microiontophoretic application of the CCKB antagonist CI-988, but not by that of the CCKA antagonist SR 27897. CCK-8S-induced activation was not significantly modified by the intravenous administration of the CCKA antagonists devazepide and SR 27897. However, it was reduced by the CCKB antagonist PD 135158, administered intravenously or intracerebroventricularly, and by the intravenous administration of the CCKB antagonist L-365,260. The intravenous administration of PD 135158 also reduced SNF-8702-induced activations. These results indicate that CCKB receptors mediate CCK-8S-induced activation of rat CA3 pyramidal neurons.  相似文献   

7.
The effect of camostate, a potent releaser of endogenous cholecystokinin (CCK), and of caerulein, an amphibian peptide mimicking the biological actions of CCK, as well as of selective CCK receptor antagonists on gastric emptying of liquids was studied in the rat. Oral administration of camostate (200 mg/kg with the liquid test meal preceded by the same dose 10 min before the meal) significantly delayed gastric emptying of saline, an effect which was completely blocked by previous administration of the CCKA receptor antagonist, devazepide, at a dose (1 mg/kg i.v.) unable to modify the emptying rate when administered alone. Caerulein (0.03-30 nmol/kg i.v.) also delayed the emptying rate in a dose-dependent manner, with an ID50 of 3.94 nmol/kg. The effect of the peptide was also inhibited by devazepide. The CCKB receptor antagonist, L365,260 (3R-(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1, 4-benzodiazepine-3-yl)-N'-(3-methylphenyl)-urea; 3 mg/kg i.v.), was completely unable to modify the CCK (both endogenous and exogenous)-induced delay in gastric emptying. Repeated (7 days) camostate administration did not modify the gastric motor response to endogenous CCK, thus, suggesting that adaptation did not take place. These results demonstrate that endogenous and exogenous CCK delays gastric emptying of liquids through stimulation of CCKA receptors and suggest that adaptation of the gastric motor response to CCK does not occur.  相似文献   

8.
Gastrin, cholecystokinin (CCK), and CCK-related peptides comprise a hormonal family characterized by an identical carboxy-terminal amino acid sequence, a domain critical for receptor binding. The addition of gastrin to small cell lung cancer (SCLC) cells causes a rapid and transient increase in the intracellular concentration of calcium ([Ca2+]i). Furthermore, gastrin acts as a direct growth factor through CCKB/gastrin receptors. We report here that the expression of the mRNA coding for CCKB/gastrin receptors correlates with the responsiveness of SCLC cells to gastrin in terms of Ca2+ mobilization and stimulation of clonal growth in semisolid medium. The GLC19 SCLC cell line had no detectable expression of CCKB/gastrin receptor mRNA. Accordingly, gastrin (1-100 nM) did not cause any measurable increase in [Ca2+]i. In contrast, the addition of cholecystokinin residues 26-33 (CCK-8) caused a rapid and transient increase in [Ca2+]i in this cell line. CCK-8 mobilized Ca2+ in a dose-dependent manner in the nanomolar range (half-maximal stimulatory concentration = 12 nM). Furthermore, the selective CCKA antagonist CAM-1481 inhibited the increase in [Ca2+]i induced by CCK-8 (half-maximal inhibitory concentration = 3 nM) in GLC19 but not in H510 cells. The selective CCKB/gastrin antagonist blocked the increase in [Ca2+]i induced by CCK-8 (half-maximal inhibitory concentration = 80 pM) in H510 but not in GLC19 cells. Thus, the effects of CCK-8 are mediated through CCKA receptors in GLC19 cells and via CCKB/gastrin receptors in H510 cells. CCK-8 markedly stimulated colony formation in GLC19 cells in a dose-dependent manner in the nanomolar range, whereas over the same concentration range, gastrin had no effect on clonal growth. CAM-1481 inhibited the CCK-stimulated colony formation in GLC19 but not in H510 cells. Our results show, for the first time, that CCKA receptors can mediate Ca2+ mobilization and growth in SCLC cells and that SCLC cells express two distinct functional CCK receptor subtypes.  相似文献   

9.
Neuropathic pains have often been classified as opioid-resistant. Here, spinal (intrathecal) actions of morphine and nonmorphine opioids have been studied in a nerve ligation model of neuropathic pain in rats. Mechanical allodynia was evaluated using von Frey filaments. Nerve-injured animals exhibited allodynia that was stable for up to 6 weeks after the surgery. Morphine did not alter allodynia at doses up to 300 nmol (100 micrograms). In contrast, [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO), a high-efficacy mu opioid agonist, produced a significant, dose-related antiallodynic action. [D-Ala2, Glu4]deltorphin (delta agonist) produced a significant antiallodynic effect only at 300 nmol, reaching approximately 70% of the maximum. Coadministration of morphine with a dose of [D-Ala2, Glu4]deltorphin, which was inactive alone, produced a significant and long-lasting antiallodynic action that was antagonized by NTI (delta receptor antagonist); NTI alone had no effect. Although blockade of cholecystokinin-B (CCKB) receptors with L365,260 did not produce effects alone, a significant antiallodynic action was observed when coadministered with morphine; this elevation of nociceptive threshold was abolished by NTI. The finding that DAMGO, but not very large doses of morphine, produced antiallodynic actions suggests that the ability of mu opioids to alleviate the allodynia is related, in part, to efficacy at postsynaptic mu receptors. At an inactive dose, a delta agonist or a CCKB antagonist enhanced morphine antiallodynic efficacy in an NTI-sensitive fashion. CCKB receptor blockade may enhance endogenous enkephalin actions, resulting in enhancement of morphine efficacy through a mu-delta receptor interaction.  相似文献   

10.
In order to elucidate the involvement of cholecystokinin (CCK) in the regulation of anxiety, the author examined the effects of the selective non-peptide CCKB receptor antagonist LY288513 on freezing behavior induced by conditioned fear stress, an animal model of anxiety. Rats were individually subjected to 5 min of inescapable electric footshock in a shock chamber. Twenty-four hours after the footshock, the rats were again placed in the shock chamber and observed for 5 min without shocks: this procedure is termed conditioned fear stress. Subcutaneous administration of LY288513 30 min before footshock (0.3 mg/kg) and 30 min before conditioned fear stress (0.03-0.3 mg/kg) reduced conditioned freezing. This indicates that LY288513 blocked both the acquisition and expression of conditioned fear. The relatively selective non-peptide CCKA receptor antagonist, lorglumide, blocked the expression of conditioned fear, but only at a high dose (1.0 mg/kg). The peripheral non-peptide CCKA/B receptor antagonist, loxiglumide, failed to do so. Subcutaneous administration of LY288513 (3 mg/kg) enhanced the conditioned fear-induced in 3, 4-dihydroxy-phenylacetic acid (DOPAC) contents in the medial prefrontal cortex, which was assayed by high performance liquid chromatography with electrochemical detection. Thirty min of inescapable electric footshock decreased CCK8S contents in the amygdala, which was assayed by radioimmunoassay. These results suggest that the brain CCKB receptors are involved in the regulation of anxiety, and that the anxiolytic effects of CCKB receptor antagonists are mediated by increasing dopamine activity in the medial prefrontal cortex. Furthermore, it is possible that the CCK neurons in the amygdala are also associated with anxiety.  相似文献   

11.
Cholecystokinin (CCK) receptors are classified as two subtypes, designated CCK(A) and CCK(B), and both subtypes are found in brain and peripheral tissues of rats. CCK-8 has been shown to act peripherally to reduce meal size, and this satiating action can be blocked by CCK(A)-receptor antagonists. Recent evidence suggests that, in addition to the peripheral action of CCK, central CCK mechanisms may also be involved in satiety. Central administration of proglumide, a mixed CCK-receptor antagonist (CCK(A) > CCK(B)) has been shown to increase food intake and block the satiating effect of peripherally administered CCK-8 (15). In an attempt to replicate and extend these results, rats were given injections of proglumide or selective CCK-receptor antagonists into the lateral ventricle prior to a peripheral injection of CCK-8 or saline. Only proglumide stimulated an increase in 30-min test meal intake and attenuated the satiating effect of CCK-8. Two selective CCK(A)-receptor antagonists, lorglumide and devazepide, did not increase intake significantly when given alone, and they did not attenuate the effect of peripherally administered CCK-8. The selective CCK(B)-receptor antagonist, L365,260, reduced intake at all doses tested except the lowest. The lowest dose did not increase intake when given alone and did not attenuate the inhibitory effect of CCK on test-meal intake. Finally, a combination of devazepide and L365,260 did not increase intake or block the effect of peripherally administered CCK-8. These results suggest that CCK released by neurons in the brain and acting on central CCK(A)- and CCK(B)-receptors is not necessary for the control of meal size or for the satiating effect of peripherally administered CCK-8 in rats under our experimental conditions.  相似文献   

12.
This study was undertaken to clarify the location of glutamatergic synaptic transmission in the descending pathway of the micturition reflex in decerebrate cats. Contractions of the urinary bladder evoked by stimulating the pontine micturition center were completely inhibited by the broad-spectrum excitatory amino acid antagonist, kynurenic acid (KYN) and the selective N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, that were applied intrathecally to the sacral cord, while such contractions were not attenuated by the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). An iontophoretic application of KYN remarkably inhibited discharges of the sacral parasympathetic preganglionic neurons innervating the urinary bladder (bladder motoneurons) elicited by pontine stimulation. Our results suggest that glutamatergic synaptic transmission is located at the level of the sacral cord in the descending limb of the micturition reflex and is mediated via NMDA receptor on the bladder motoneurons.  相似文献   

13.
Cholecystokinin is involved at both central and peripheral level in the control of gut motility. At CNS level, CCK8 appears to play a major role in the adaptation of duodeno-jejunal motility to the postprandial state, ie the disruption of the migrating motor complex. CCK8 microinjected into the ventro-medial nucleus of the hypothalamus (VLH) induces a fed-like pattern not reproduced by similar administration into the hypothalamus. Furthermore, CCKA antagonists such as devazepide injected into the VMH just prior to the meal shortens the duration of the postprandial pattern of activity, an effect not reproduced by similar injection into the LH. Similarly the colonic motor activation observed after feeding is suppressed by devazepide injected into the VMH in rats. In addition, icv administration of CCKA but not CCKB receptor antagonist prevents meal- and CCK8-induced colonic hyperkinesia in dogs. In rats, emotional stress is associated with an increase in colonic motility related to the central release of CRF. We have shown that CCK8 injected centrally, at a lower dose than that producing an increase in colonic motility, is able to prevent stress-induced colonic motor alteration.  相似文献   

14.
The analgesic efficacy of morphine is sometimes only partial in patients with chronic benign pain. Among the possible factors contributing to this limitation are increased levels of cholecystokinin (CCK). We performed this prospective, placebo-controlled, double-blind, cross-over study to examine the effect of proglumide, a nonspecific CCK agonist, on analgesia in patients taking morphine on a chronic basis. Forty patients with intractable pain who were taking sustained-release morphine were recruited, and we obtained results from 36 of these patients. Median visual analog scale scores before the study were 8 and 7 after the addition of placebo for 2 wk (P = 0.16), and 6 after proglumide for 2 wk (P = 0.002). Mobility was unchanged by proglumide or placebo. Of the 36 patients, 13 elected to continue receiving proglumide after the study. We conclude that proglumide enhances the analgesia produced by morphine in some, but not all, patients with chronic benign pain. IMPLICATIONS: The pain-killing effect of morphine is incomplete in some patients. Increasing doses may be needed to maintain the initial effect. The peptide cholecystokinin may be partially responsible for this. In this study, we demonstrated that the cholecystokinin antagonist proglumide increases the analgesic effect of morphine in some patients with chronic benign pain.  相似文献   

15.
To test the possible role of cholecystokinin (CCK) in the decrease of social exploration induced by intraperitoneal (IP) injection of lipopolysaccharide (LPS, 100 microg/kg), mice were pretreated with IP or intracerebroventricular (ICV) injection of the CCKA receptor antagonist L-364,718 (3 mg/kg and 10 microg/kg, respectively) and the CCKB receptor antagonist L-365,260 (1 mg/kg and 10 microg/kg, respectively). L-364,718 and L-365,260 did not alter LPS-induced decrease in social investigation, whatever the route of administration, suggesting that endogenous cholecystokinin does not mediate the effect of proinflammatory cytokines on social exploration in mice.  相似文献   

16.
17.
Long-lasting facilitations of spinal nociceptive reflexes resulting from temporal summation of nociceptive inputs have been described on many occasions in spinal, nonanesthetized rats. Because noxious inputs also trigger powerful descending inhibitory controls, we investigated this phenomenon in intact, halothane-anesthetized rats and compared our results with those obtained in other preparations. The effects of temporal summation of nociceptive inputs were found to be very much dependent on the type of preparation. Electromyographic responses elicited by single square-wave electrical shocks (2 ms, 0.16 Hz) applied within the territory of the sural nerve were recorded in the rat from the ipsilateral biceps femoris. The excitability of the C-fiber reflex recorded at 1.5 times the threshold (T) was tested after 20 s of electrical conditioning stimuli (2 ms, 1 Hz) within the sural nerve territory. During the conditioning procedure, the C-fiber reflex was facilitated (wind-up) in a stimulus-dependent fashion in intact, anesthetized animals during the application of the first seven conditioning stimuli; thereafter, the magnitude of the responses reached a plateau and then decreased. Such a wind-up phenomenon was seen only when the frequency of stimulation was 0.5 Hz or higher. In spinal, unanesthetized rats, the wind-up phenomenon occurred as a monotonic accelerating function that was obvious during the whole conditioning period. An intermediate picture was observed in the nonanesthetized rat whose brain was transected at the level of the obex, but the effects of conditioning were profoundly attenuated when such a preparation was anesthetized. In intact, anesthetized animals the reflex was inhibited in a stimulus-dependent manner during the postconditioning period. These effects were not dependent on the frequency of the conditioning stimulus. Such inhibitions were blocked completely by transection at the level of the obex, and in nonanesthetized rats were then replaced by a facilitation. A similar long-lasting facilitation was seen in nonanesthetized, spinal rats. It is concluded that, in intact rats, an inhibitory mechanism counteracts the long-lasting increase of excitability of the flexor reflex seen in spinal animals after high-intensity, repetitive stimulation of C-fibers. It is suggested that supraspinally mediated inhibitions also participate in long term changes in spinal cord excitability after noxious stimulation.  相似文献   

18.
Cholecystokinin (CCK) plays an important role in both the alimentary tract and the central nervous system (CNS). At present it seems to be the most abundant neuropeptide in the CNS. This paper reviews the CCK neuronal system and its interactions with gamma-aminobutyric acid (GABA) and serotonin (5-hydroxytryptamine; 5-HT). In addition, its putative role in anxiety will be discussed on the basis of animal data and studies in healthy volunteers and panic disorder patients. According to these investigations, the CCK4 challenge test fulfills most criteria for an ideal panicogenic agent and evidence has been found that CCKB receptor antagonists might possess anxiolytic properties in man.  相似文献   

19.
Conflicting reports about the acquisition of conditioned hyperalgesia during the development of conditioned morphine tolerance have led researchers to suggest that tolerance reflects a reduction of stimulus processing rather than a compensatory response interaction. I tested conditioned hyperalgesia on both the hot-plate and tail-flick tests in the same animals. In accordance with previous reports, the tail-flick responses in drug-free animals failed to reveal a conditioned compensatory hyperalgesia. Conditioning effects in the tail-flick test were found only when the animals were challenged with a low dose of morphine. However, the hot-plate response in drug-free animals replicated earlier demonstrations of conditioned hyperalgesia. The results suggests that the measurement of conditioned respones in drug-free animals depends on characteristics of the assessment procedure. These findings are consistent with accounts of morphine tolerance that depend on compensatory response interactions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
1. The ability of CP-99,994, and its less active enantiomer, CP-100,263, to inhibit spontaneous behaviours and hyperalgesia induced by central infusion of the NK1 receptor agonist, GR73632 or intraplantar injection of formalin was investigated in rats and gerbils. 2. GR73632 (3 pmol, i.c.v.)-induced foot tapping in gerbils was dose-dependently inhibited by CP-99,994 (0.1-1 mg kg-1, s.c.), but not by CP-100,263 (10 mg kg-1, s.c.) using pretreatment times up to 60 min. The centrally active dose-range for CP-99,994 was increased to 1-10 mg kg-1 s.c. with a higher challenge dose of GR73632 (30 pmol, i.c.v.). 3. In gerbils, intrathecal (i.t.) injection of GR73632 (30 pmol) elicited behaviours (licking, foot tapping or flinching and face washing) which closely resembled, but which was less specifically localized than, behaviours seen in animals injected with formalin (0.1-5%) into one hindpaw. 4. In rats, CP-100,263, but not CP-99,994 (up to 30 mg kg-1), inhibited the early phase response to intraplantar injection of 5% formalin (ID50 = 13.9 mg kg-1). The late phase was inhibited by both compounds (ID50 values 36.3 and 20.9 mg kg-1, respectively). In gerbils, there was marginal evidence for enantioselective inhibition of the early phase induced by formalin (2%). The ID50 values were 6.2 mg kg-1 for CP-99,994 and 13.4 mg kg-1 for CP-100,263. 5. Intrathecal injection of GR73632 (30 pmol) caused thermal hyperalgesia in igerbils which was inhibited enantioselectively by s.c. administration of CP-99,994 (ID50= 2.46 mg kg-1), but not by CP-100,263 (30 mg kg-1).6. In gerbils, intraplantar injection of formalin (0.1%) caused thermal hyperalgesia which was inhibited by CP-99,994 (ID50= 1.1 mg kg-1, s.c.). There was a nonsignificant trend for an anti-algesic effect of CP-100,236 (estimated ID50 = 8.2 mg kg-1, s.c.).7 These findings support the proposal that NK1 receptor antagonists may be useful in the clinical management of pain and reinforce the need to dissociate specific and nonspecific antinociceptive effects of available compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号