首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了NixCo1-x(OH)2干凝胶中钴含量对其电性能及循环稳定性的影响。用溶胶-凝胶法制备了NixCo1-x(OH)2干凝胶材料,用液氮吸附、XPS和XRD研究了含钴Ni(OH)2干凝胶的组成和结构,用恒电流技术研究了它们的电容性能。结果表明,NixCo1-x(OH)2干凝胶具有较高的比表面积和丰富的中孔;添加钴改善了NixCo1-x(OH)2干凝胶的倍率性能,当钴含量达到24%时效果最佳;充放电后CoxNi1-x(OH)2干凝胶的晶态结构仍是β-Ni(OH)2晶相结构,钴含量20%以上的CoxNi1-x(OH)2干凝胶充放电后微晶尺寸变化不明显;组成的活性炭/ Ni0.76Co0.24(OH)2干凝胶电容器20 mA/cm2充放电循环时,库仑效率达到95%以上,循环100000次以上,电容器的比容量仍保持在90%以上。在长循环过程中,Ni0.76Co0.24(OH)2干凝胶的微晶尺寸变化不大,微晶晶胞a轴逐渐变大、c轴逐渐缩小,晶胞参数趋向理想的β-Ni(OH)2晶体。  相似文献   

2.
为提高Mg O/Mg(OH)2的热化学蓄/放热性能,采用焙烧法将氧化镁(Mg O)负载在纳米多孔碳(NCP)材料上制备纳米碳基氧化镁(NCP-Mg O)复合材料。研究结果表明,NCP载体使MgO在其表面形成粒径为10~30 nm大小的颗粒,复合材料NCP-MgO具有较高的导热系数,负载80%MgO后导热系数是纯MgO的2.6倍。在反应温度110℃、水蒸气压力57.8 kPa的实验工况下,发现水合速率的大幅提升是强化Mg O/Mg(OH)2蓄热性能的主要原因,在水合反应60 min和120 min时,NCP-MgO复合材料的水合转化率分别是纯MgO的2.25倍和1.6倍。在水合反应120 min后,MgO负载率为80%的NCP-MgO复合材料的蓄热密度可达1 053 kJ/kg,是纯MgO的1.4倍。该研究可为MgO/Mg(OH)2在化学蓄热系统的应用提供一定的参考。  相似文献   

3.
InP shows a very high efficiency for solar light to electricity conversion in solar cell and may present an expectation property in photocatalytic hydrogen evolution. However, it suffers serious corrosion in water dispersion. In this paper, it is demonstrated that the stability and activity of the InP-based catalyst are effectively enhanced by applying an anti-corrosion SnO layer and In(OH)3 transition layer, which reduces the crystal mismatch between SnO and InP and increases charge transfer. The obtained Pt/SnO/In(OH)3/InP exhibits a hydrogen production rate of 144.42 µmol/g in 3 h under visible light illumination in multi-cycle tests without remarkable decay, 123 times higher than that of naked In(OH)3/InP without any electron donor under visible irradiation.  相似文献   

4.
The effects of surface coating of Y(OH)3 on the electrochemical performance of spherical Ni(OH)2 were studied by cyclic voltammetry (CV) with soft-embedded electrode (SE-E). The coating was performed by chemical surface precipitation under different conditions. The structure, morphology, chemical composition and electrochemical properties of two different samples with surface coating of Y(OH)3 were characterized and compared. The results show that a two-step oxidation process exists in the oxidation procedure of spherical Ni(OH)2 corresponding to the formation of Ni(III) and Ni(IV), respectively. The conversion of Ni(III) to Ni(IV) is regarded as a side reaction in which Ni(IV) species is not stable. The presence of Y(OH)3 on the particle surface can restrain the side reactions, especially the formation of Ni(IV). The application of coated Ni(OH)2 to sealed Ni–MH batteries yielded a charge acceptance of about 88% at 60 °C. The results manifest that the high-temperature performance of Ni(OH)2 electrode is related to the distribution of the adding elements in surface oxide layer of Ni(OH)2, the sample with dense and porous coating surface, larger relative surface content and higher utilization ratio of yttrium is more effective.  相似文献   

5.
The hydrogen storage alloy (MmNi3.6Co0.7Mn0.4Al0.3, Mm=Ce-rich mischmetal) electrodes were treated in an alkaline solution containing a reducing agent (KBH4 or NaH2PO2). Cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) were applied to characterize the electrochemical properties of the alloy electrodes before and after surface treatment. The results show that the charging efficiency and electrochemical reaction activity of metal hydride (MH) electrode were markedly improved by the treating. The reaction of the untreated MH electrode was chiefly controlled by the charge transfer process at the interface of electrode/electrolyte, or by the mixture of the charge transfer and hydrogen diffusion processes, but the reaction of the treated electrode was mainly controlled by hydrogen atom's diffusion in the alloy bulk. The results of EIS measurements indicate that the charge transfer resistance of MH electrode was reduced and its specific surface area augmented after treatment.  相似文献   

6.
The use of manganese dioxide (MnO2) as a positive electrode material in Fuel Cell/Battery (FCB) systems is described. A positive electrode containing MnO2 was fabricated and its performance was evaluated for charge/discharge behavior in three different systems: (i) secondary battery positive electrode, (ii) positive electrode in an alkaline fuel cell, and (iii) positive electrode performance in an FCB system by performing half cell tests. MnO2 was observed to possess redox capabilities as the positive electrode of a secondary battery when it was subject to charge/discharge cycles. It was found that Mn3O4, which inhibits the discharge reaction, was produced during charge/discharge cycles. The IV characteristics of MnO2 material were measured to check the feasibility of the fuel cell system by supplying H2 into the negative electrode and O2 into the MnO2 positive electrode, respectively. The MnO2 electrode showed similar performance to Ni electrode, which was fabricated by using a similar method to the MnO2 electrode. The MnO2 electrode also showed that it functioned as an FCB positive electrode, which was confirmed by continued production of current when the O2 supply was terminated. These results suggest that MnO2 is a good candidate for an FCB positive electrode material.  相似文献   

7.
LiNi1/3Mn1/3Co1/3O2 prepared by a spray drying method exhibited poor cyclic performance when it was operated at rates of 0.5C and 2C in 3–4.6 V. A metal oxide (ZrO2, TiO2, and Al2O3) coating (3 wt%) could effectively improve its cyclic performance at both 0.5C and 2C. Electrochemical impedance spectroscopy (EIS) studies suggested that both the surface resistance and the charge transfer resistance of the bare LiNi1/3Mn1/3Co1/3O2 significantly increase after 100 cycles, whose origin is mainly related to the change in both the particle surface and electrode morphologies. The presence of a thin metal oxide layer could remarkably suppress the increase in the total resistance (sum of the surface resistance and the charge transfer resistance), which was attributed to the improvement in good cyclic performances.  相似文献   

8.
具有三维网络结构的NASICON型Na3V2(PO4)3材料,由于其稳定的电压平台,较高的理论容量(117 mA·h/g),被视为一种具有良好应用前景的钠离子电池负极材料。采用溶剂热和进一步热处理的方式,获得石墨烯包封Na3V2(PO4)3的复合材料[Na3V2(PO4)3/G],有效提高了Na3V2(PO4)3的电子导电性。在0.01~3.00 V电压区间,0.2 C倍率进行测试时,Na3V2(PO4)3/G复合材料在230圈循环后,其放电比容量保持在100.9 mA·h/g,容量保持率高达68.4%,即使在5 C倍率,其放电比容量仍可达65.2 mA...  相似文献   

9.
Low-cost nickels can be used as cocatalyst to improve the performance of photocatalysts, which may be promising materials applied in the field of photocatalytic water splitting. In this study, different nickel species Ni, Ni(OH)2, NiO, NiOx, and NiS are used to modified titanium dioxide (P25) to investigate their roles on the photocatalytic hydrogen evolution activities. UV-visible, X-ray diffraction (XRD), Brunner-Emmet-Teller (BET) measurements, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) analysis etc. are employed to characterize the physical and chemical properties of catalysts. The results indicate that all the nickel species can improve the photocatalytic hydrogen production activity of P25. The P25 modified with NiOx and NiS has more superior photocatalytic hydrogen evolution activities than those modified with other nickel species. The reason for this is that NiOx and NiS can form p-n junctions with P25 respectively. In addition, NiOx can be selectively deposited on the active sites of P25 via in situ the photodeposition method and NiS is beneficial for H+ reacting with photo-excited electrons.  相似文献   

10.
The hydrogen sorption properties of calcium borohydride (Ca(BH4)2) catalyzed with a small amount of TiF3, TiCl3, NbF5 or NbCl5 are investigated using thermal analyses and X-ray diffraction. NbF5 exhibits the best performance among all the catalysts; it causes a decrease in the hydrogen desorption temperature which leads to hydrogen absorption at practical temperature and pressure conditions. The hydrogen content of Ca(BH4)2 with NbF5 reaches about 5.0 wt.% after hydrogen absorption at 693 K for 24 h under 90 bar of hydrogen. The main dehydrogenation product of Ca(BH4)2 with NbF5 is a CaH2−xFx solid solution with a CaF2 (C1) structure, while pure Ca(BH4)2 produces CaH2 after hydrogen desorption.  相似文献   

11.
The serious surface charge recombination and fatigued photogenerated carriers transfer of the BiVO4 photoanode restrict its photoelectrochemical (PEC) water splitting performance. In this work, nickel fluoride (NiF2) is applied to revamp pure BiVO4 photoanode by using a facile electrodeposition method. As a result, the as-prepared NiF2/BiVO4 photoanode increases the dramatic photocurrent density by approximately 180% compared with the pristine BiVO4 photoanode. Furthermore, the correlative photon-to-current conversion efficiency, the charge injection, and the separation efficiency, as well as the hydrogen generation of the composite photoanode have been memorably enhanced due to the synergy of NiF2 and BiVO4. This study may furnish a dependable guidance in fabricating the fluoride-based compound/semiconductor composite photoanode system.  相似文献   

12.
制备锂离子电池正极材料LiNi0.8Co0.2O2通常需要在纯氧气气氛下进行烧结.本工作以硫酸镍,硫酸钴和氢氧化钠为原料,采用并流共沉淀法制备了高密度Ni0.8Co0.2(OH)2前驱体,再采用高温固相反应法在空气中烧结制备了锂离子电池LiNi0.8Co0.2O2正极材料.采用X射线衍射(XRD),扫描电镜(SEM),恒流充放电测试(ECT),循环伏安(CV)与比表面积(BET)测试等方法对目标样品进行了表征,详细考察了烧结条件对材料结构,微观形貌及电化学性能的影响.结果表明,锂/(钴+镍)摩尔比为1.13∶1时,在管式炉中和空气气氛下于第一段烧结温度700 ℃保温9 h,于第二段烧结温度750 ℃保温12 h,合成的材料比表面积适中(0.78 m2/g),具有规则的六边形α-NaFeO2层状结构,晶粒分布均匀,电化学性能最优.在0.5 C充放电倍率下和2.7~4.3 V电压范围内,其首次放电比容量达到153.0 mA·h/g,循环20次后放电比容量仍为150.7 mA·h/g,容量保持率达到98.5%,显示了优异的循环稳定性能,可用做高能量密度动力电池正极材料.  相似文献   

13.
Electrochemical properties of iron carbide (Fe3C) for use as an alkaline battery anode were investigated during charge–discharge cycles. Results of electrochemical measurements and Mössbauer spectroscopy suggested that Fe3C is oxidized irreversibly to Fe3O4 during discharge processes and that the produced Fe3O4 is subsequently changed to Fe(OH)2 and Fe during the charging process, raising the discharge/charge capacity in further galvanostatic cycles. In addition, the electrode particles were observed to be less than 100 nm in diameter and to be highly dispersed on the surface of carbon black. These phenomena seems to be caused by dissolution and deposition of Fe(OH)2 and Fe via intermediate iron species, leading to exposure of a fresh Fe3C surface to the electrolyte after the second discharge.  相似文献   

14.
本文采用共沉淀法制备球形Ni0.80Co0.15Al0.05(OH)2.05前驱体,经预氧化后,采用富锂配比在氧气和空气气氛下烧结合成LiNi0.80Co0.15Al0.05O2正极材料.用X射线衍射,扫描电镜和恒电流充放电测试等方法对该材料的结构,形貌及电化学性能进行表征.结果表明:当锂配比为1.15时,氧气和空气中烧结合成的LiNi0.80Co0.15Al0.05O2正极材料的形貌,结构和电化学性能相当.富锂配比方法可在空气气氛下制备出电化学性能优异的LiNi0.80Co0.15Al0.05O2正极材料.0.1 C放电克比容量在200 mA·h/g以上,首次效率在87%左右;1 C放电克比容量在168 mA·h/g以上;800周循环容量保持率在80%以上.  相似文献   

15.
Gasification of peanut shell, sawdust and straw in supercritical or subcritical water has been studied in a batch reactor with the presence of a series of Raney-Ni and its mixture with ZnCl2 or Ca(OH)2. The main gas products were hydrogen, methane, carbon dioxide, and a small amount of carbon monoxide. Different types of Raney-Ni, containing different metal components such as Fe, Mo or Cr, have different influences on the gasification yield and hydrogen selectivity. The catalysis effect can be improved obviously by adding ZnCl2 or Ca(OH)2. Increasing the reaction temperature or adding ZnCl2 and Ca(OH)2 could improve the mass of H2 in gas products and reduce the mass of CH4 and CO2 at the same time. The possible mechanism is that ZnCl2 can decompose the biomass particle by accelerating cellulose hydrolyzation in high-temperature water, increasing more specific surface to admit catalysts, while Ca(OH)2 can absorb CO2 to produce CaCO3 deposit, which can drop out from the reactant system, and which will drive the reaction to get more hydrogen. With respect to the biomass conversion to gas product and selectivity of H2 at low temperature, the series of Raney-Ni has shown many advantages over other catalysts; thus, this kind of catalyst has great potential to be utilized in the hydrogen industry for the gasification of biomass.  相似文献   

16.
LiFePO4/C was prepared by solid-state reaction from Li3PO4, Fe3(PO4)2·8H2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)–DMC (dimethylcarbonate) 1 M LiPF6 was performed by galvanostatic charge–discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge–charge pulses, at different high C-rates (5–45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO4/C for full-HEV batteries at low energy costs.  相似文献   

17.
In this study, the electronic and photocatalytic properties of core-shell heterojunctions photocatalysts with reversible configuration of TiO2 and Bi2O3 layers were studied. The core-shell nanostructure, obtained by efficient control of the sol-gel polymerization and impregnation method of variable precursors of semiconductors, makes it possible to study selectively the role of the interfacial charge transfer in each configuration. The morphological, optical, and chemical composition of the core-shell nanostructures were characterized by high-resolution transmission electron microscopy, UV-visible spectroscopy and X-ray photoelectron spectroscopy. The results show the formation of homogenous TiO2 anatase and Bi2O3 layers with a thickness of around 10 and 8 nm, respectively. The interfacial charge carrier dynamic was tracked using time resolved microwave conductivity and transition photocurrent density. The charge transfer, their density, and lifetime were found to rely on the layout layers in the core-shell nanostructure. In optimal core-shell design, Bi2O3 collects holes from TiO2, leaving electrons free to react and increase by 5 times the photocatalytic efficiency toward H2 generation. This study provides new insight into the importance of the design and elaboration of optimal heterojunction based on the photocatalyst system to improve the photocatalytic activity.  相似文献   

18.
Since the catalytic activity of present nickel-based synthetic selenide is still to be improved, MoSe2-Ni3Se2 was synthesized on nickel foam (NF) (MoSe2-Ni3Se2/NF) by introducing a molybdenum source. After the molybdenum source was introduced, the surface of the catalyst changed from a single-phase structure to a multi-phase structure. The catalyst surface with enriched active sites and the synergistic effect of MoSe2 and Ni3Se2 together enhance the hydrogen evolution reactions (HER), the oxygen evolution reactions (OER), and electrocatalytic total water splitting activity of the catalyst. The overpotential of the MoSe2-Ni3Se2/NF electrocatalyst is only 259 mV and 395 mV at a current density of 100 mA/cm2 for HER and OER, respectively. MoSe2-Ni3Se2/NF with a two-electrode system attains a current density of 10 mA/cm2 at 1.60 V. In addition, the overpotential of HER and OER of MoSe2-Ni3Se2/NF within 80000 s and the decomposition voltage of electrocatalytic total water decomposition hardly changed, showing an extremely strong stability. The improvement of MoSe2-Ni3Se2/NF catalytic activity is attributed to the establishment of the multi-phase structure and the optimized inoculation of the multi-component and multi-interface.  相似文献   

19.
MoS2 is a promising electrocatalyst for hydrogen evolution reaction and a good candidate for cocatalyst to enhance the photoelectrochemical (PEC) performance of Si-based photoelectrode in aqueous electrolytes. The main challenge lies in the optimization of the microstructure of MoS2, to improve its catalytic activity and to construct a mechanically and chemically stable cocatalyst/Si photocathode. In this paper, a highly-ordered mesoporous MoS2 was synthesized and decorated onto a TiO2 protected p-silicon substrate. An additional TiO2 necking was introduced to strengthen the bonding between the MoS2 particles and the TiO2 layer. This meso-MoS2/TiO2/p-Si hybrid photocathode exhibited significantly enhanced PEC performance, where an onset potential of +0.06 V (versus RHE) and a current density of −1.8 mA/cm2 at 0 V (versus RHE) with a Faradaic efficiency close to 100% was achieved in 0.5 mol/L H2SO4. Additionally, this meso-MoS2/TiO2/p-Si photocathode showed an excellent PEC ability and durability in alkaline media. This paper provides a promising strategy to enhance and protect the photocathode through high-performance surface cocatalysts.  相似文献   

20.
Titanium nitride (TiN) decorated N-doped titania (N-TiO2) composite (TiN/N-TiO2) is fabricated via an in situ nitridation using a hydrothermally synthesized TiO2 and melamine (MA) as raw materials. After the optimization of the reaction condition, the resultant TiN/N-TiO2 composite delivers a hydrogen evolution activity of up to 703 μmol/h under the full spectrum irradiation of Xe-lamp, which is approximately 2.6 and 32.0 times more than that of TiO2 and TiN alone, respectively. To explore the underlying photocatalytic mechanism, the crystal phase, morphology, light absorption, energy band structure, element composition, and electrochemical behavior of the composite material are characterized and analyzed. The results indicate that the superior activity is mainly caused by the in situ formation of plasmonic TiN and N-TiO2 with intimate interface contact, which not only extends the spectral response range, but also accelerates the transfer and separation of the photoexcited hot charge carrier of TiN. The present study provides a fascinating approach to in situ forming nonmetallic plasmonic material/N-doped TiO2 composite photocatalysts for high-efficiency water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号