共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
图像语义描述模型通常采用编码器-解码器方式实现图像语义描述,模型存在对图像特征利用不充分,图像目标的位置信息提取不足等问题.针对此问题,提出在编码器部分融合注意力机制的图像语义描述算法,通过解码器上下文信息对不同图像特征的注意力权重分配,从而提高图像语义描述的表达能力.并在Flickr30k和MSCOCO数据集上进行了... 相似文献
4.
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络——多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 相似文献
5.
基于深度学习的单图像超分辨率重建方法已经比较完善,重建图像具有较高的客观评价值或具有较好的视觉效果,但是图像感知效果和客观评价值不能均衡提升.针对这一问题,提出一种融合注意力的生成式对抗网络单图像超分辨率重建方法.首先去掉残差网络中会破坏图像原本的对比度信息、影响图像生成质量的批归一层,其次是构造注意力卷积神经网络残差... 相似文献
6.
7.
8.
9.
10.
针对现有的膝关节CT图像分割方法耗时长、精度低的问题,文中提出一种改进U-Net的卷积神经网络。首先,该网络将添加批归一化层的残差模块作为U-Net编码过程的主要单元,以增加对图像特征的提取能力,克服网络训练过程中可能产生的梯度消失和梯度爆炸问题;其次,把Attention U-Net中的注意力门加入到U-Net解码过程的前3个阶段,在尽量减少网络复杂性的同时突出模型对图像重要特征的学习;最后,该网络结合Adam一阶优化算法和Focal Loss损失函数实现膝关节CT图像的精准分割。在膝关节CT图像数据集上,Dice系数、IOU系数精度分别达到96.5%,93.4%,豪斯多夫距离减小到(3.2±1.3)mm。相比U-Net和SegNet模型,文中算法在膝关节CT图像的分割方面精度更高,网络训练时间减少,平均预测每张图像的效率也有较大提高。 相似文献
11.
12.
Bardera A. Rigau J. Boada I. Feixas M. Sbert M. 《IEEE transactions on image processing》2009,18(7):1601-1612
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms. 相似文献
13.
新型冠状病毒肺炎肆虐全球,严重影响了人类社会的生活和健康。CT影像技术是检测新冠肺炎的重要诊断方式,从CT图像中自动准确分割出新冠肺炎病灶区域,对于诊断、治疗和预后都有重要意义。针对新冠肺炎病灶的自动分割,文中提出基于Inf-Net算法改进的自动分割方法,通过引入通道注意力机制加强特征表示,并运用注意力门模块来更好地融合边缘信息。在COVID-19 CT分割数据集上的实验结果表明,文中所提出新冠肺炎图像分割方法的Dice系数、灵敏度、特异率分别为75.1%、75.4%和95.4%,算法性能也优于部分主流方法。 相似文献
14.
为了提高图像分割的准确度,尽可能降低分割边缘噪声对图像分割的影响,提出了一种基于降雪模型的图像分割方法,先对降雪模型及积雪表面效应做了详细分析,得出降雪模型运用于图像分割具有较强的适应性,接着在传统的随机游走图像分割算法中加入了自适应降雪模型的特性,生成新的算法,最后运用虚拟图像和真实图像进行算法性能实例仿真,结果表明,该算法的图像分割性能优于常见的NCut和传统随机游走图像分割算法,具有一定的研究价值。 相似文献
15.
16.
针对图像语义分割中目标边界容易混淆、定位不准以及边界不平滑问题,在Deeplab v2 Resnet-101网络的基础上引入提出的逆注意层与像素相似度学习层,构造了一种新的语义分割的网络结构,并设计了注意力层和像素相似度学习层的损失函数。首先,使用Deeplab v2 Resnet-101网络提取图像语义特征;然后,利用提出的逆注意力层修正预测网络的分割结果,同时,利用提出的像素相似度学习层解决边界不够平滑的问题;最后融合两者分割的结果,得到语义分割的结果。在PASCAL-Context上取得了像素准确度76.2%、像素平均准确度59.7%、平均IoU(Intersection over Union)准确度指标49.9%的结果,在PASCAL Person-Part、NYUDv2、MIT ADE20K数据集上分别取得了平均IoU准确度指标69.6%、42.1%、44.38%的结果,与已有的主流方法相比,所提算法能够提升语义分割的精确度,验证了算法的有效性。 相似文献
17.
18.
一种改进的模糊核聚类红外图像分割算法 总被引:1,自引:1,他引:1
针对模糊核聚类对红外图像分割存在的不足,提出了一种改进的模糊核聚类红外图像分割算法.首先在模糊核聚类的基础上引入了隶属度和空间约束关系,有效抑制了野点;然后定义了像素对类别的认同度指数和类别对像素的排斥性度量,并将之引入到隶属度函数中,判断像素的分类合理性,提高聚类的精度,更好地分割目标和背景区域,保护目标的完整性和精确性.实验结果表明,与传统的模糊聚类分割结果相比,该算法能准确完整地分割出目标,防止背景像素和野值点对目标区域的干扰,获得良好的分割效果. 相似文献
19.
改进的二维Otsu图像分割方法及其快速实现 总被引:12,自引:0,他引:12
通过实验和理论验证2维直方图的副对角区域的概率和不一定很小而不能忽略,因而传统2维Otsu法中关于主对角区域的概率和近似为1的假设不够合理。针对该问题,该文提出了一种改进的2维Otsu法及其快速实现。新方法舍弃了不合理的假设,通过单独计算2维直方图主对角区域概率的方法,来准确估计主对角区域中目标和背景的概率,并重新计算2维Otsu。实验结果表明,改进的2维Otsu法能够获得明显优于传统2维Otsu法的分割效果,其快速算法的计算复杂度与传统2维Otsu法的快速算法相当。 相似文献
20.
基于DeepLabV3+进行图像分割时,在特征提取阶段忽略了不同级别的特征图中存在的特征重要程度不同,丢失了大量的细节信息,致使分割效果不佳.针对该问题,提出了一种基于DeepLabV3+与注意力机制相结合的图像语义分割算法.在骨干网络Xception模型中提取两条低级特征作为解码器的输入特征,提高特征提取的准确性;采... 相似文献