共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
针对电力负荷随机性、波动性以及非线性因素所导致预测精度不高等问题,提出了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)短期负荷预测模型。该方法首先借助VMD将原始负荷时间序列分解成不同频率的本征模态函数(IMF)和残差分量(Res),然后对各分量建立不同的LSSVM预测模型并利用SSA进行参数优化,最后将各分量预测值组合得到最终的预测结果。以比利时蒙斯大学和中国河南省某地区两组真实数据为例进行预测分析,将预测结果与LSSVM、VMD-LSSVM、SSA-LSSVM模型预测值对比,得出本文方法的两组数据MAPE值分别为1.5016%、4.765%,远低于其他模型。结果表明本文组合预测模型在预测精度上具有一定的优越性。 相似文献
3.
介绍了BP神经网络算法的原理以及对其采用非线性阻尼最小二乘法Levenberg-Marquardt进行优化的的方法。针对短期电力负荷的特点,设计了预测短期电力负荷的BP神经网络模型和预测流程,并结合具体实例,采用MATLAB神经网络工具箱编程。与实例结果的比较表明,此方法预测短期电力负荷具有实用价值。 相似文献
4.
5.
乔维德 《电力系统保护与控制》2007,35(17):17-21
粒子群优化(PSO)算法是基于群智能的全局优化技术,它通过粒子间的相互作用,对解空间进行智能搜索,从而发现最优解。该文对基本粒子群算法进行改进,并将改进粒子群优化算法与误差反向传播(BP)算法结合起来构成的混合算法用于训练人工神经网络,对短期电力负荷进行预测。实践结果表明:改进PSO-BP算法有效地解决常规BP算法学习网络权值和阈值收敛速度慢、易陷入局部极小等问题,具有较快的收敛速度和较高的预测精度。 相似文献
6.
乔维德 《电力系统保护与控制》2007,35(17)
粒子群优化(PSO)算法是基于群智能的全局优化技术,它通过粒子间的相互作用,对解空间进行智能搜索,从而发现最优解.该文对基本粒子群算法进行改进,并将改进粒子群优化算法与误差反向传播(BP)算法结合起来构成的混合算法用于训练人工神经网络,对短期电力负荷进行预测.实践结果表明:改进PSO-BP算法有效地解决常规BP算法学习网络权值和阈值收敛速度慢、易陷入局部极小等问题,具有较快的收敛速度和较高的预测精度. 相似文献
7.
8.
9.
为改善因人工神经网络参数随机初始化对短期电力负荷预测带来的不足,提出一种基于改进多元宇宙(improvedmultivariateuniverseoptimizer, IMVO)算法优化极限学习机(extremelearningmachine, ELM)的短期电力负荷预测方法。算法的改进包含3个方面。首先,添加beta分布的随机数得到改进Tent混沌映射方法,采用遍历均匀性更好的改进Tent混沌映射方法使MVO算法得到好的初始解位置。其次,采用指数形式改进传统MVO算法的旅行距离率,利用指数形式改进后可使算法在整个寻优迭代前中期保持较高的全局开发水平。然后,采用精英反向学习的方法改进宇宙群。通过基准函数测试改进前后算法的性能,表明IMVO算法具有更好的稳定性和鲁棒性。最后,利用IMVO算法优化ELM的权值和阈值,建立IMVO-ELM短期电力负荷预测模型。通过实例分析和实验对比,表明IMVO-ELM模型的稳定性、预测精度和泛化能力均优于其他模型。 相似文献
11.
电力负荷数据具备时序性和非线性特征,长短时记忆神经网络(LSTM,long short-term memory)可以有效处理上述数据特性。然而LSTM算法性能对预置参数具有极大的依赖性,依靠经验设定的参数会使模型具有较低的泛化性能,降低了预测效果。为解决上述问题,提出非线性动态调整惯性权重粒子群算法(NIWPSO,nonlinear dynamic inertia weight strategy particle swarm optimization)与LSTM相结合的预测模型NIWPSO-LSTM。利用非线性动态调整惯性权重的方法来提升PSO的全局寻优能力,再通过NIWPSO对LSTM的参数进行优化。实验结果表明,NIWPSO-LSTM预测精度要远高于其他模型,验证了所提方案的可行性。 相似文献
12.
为了准确预测电力系统的短期负荷变化,为电力系统安全、经济、高效运行提供指导方向,提出了一种将模糊聚类以及随机森林回归算法进行组合的电力系统负荷预测方法,利用粗糙集构建补偿规则,对预测结果进行修正补偿。首先,通过对电力系统负荷的周期性、天气相关性等特征进行分析,利用C均值模糊聚类算法对历史样本进行聚类,在进行随机森林回归预测时,使用聚类后同类数据作为训练集样本构建决策树。考虑到随机森林回归预测偏保守、电力系统负荷在峰值处波动大的特征,在得到预测结果后利用粗糙集理论生成补偿规则,对负荷预测进行修正。利用所述方法对北爱尔兰地区进行一日24 h的负荷预测,结果跟实际负荷的平均绝对误差百分比为2.09%,验证了该预测方法的有效性。 相似文献
13.
近年来,电力行业快速发展,对电力负荷进行预测也越来越重要,其中短期负荷预测对于电力系统的调度和市场运行起到极其重要的作用,精准的电力负荷预测可以有效提高发电设备利用度.融合卡帕(Kappa)测度和萤火虫算法的进行选择性集成学习方法实现短期负荷预测,该方法首先使用自展法(bootstrap抽样)生成多个学习器,然后使用K... 相似文献
14.
考虑非负荷因素对短期负荷预测的影响,提出了基于优化决策树的短期负荷预测新方法。该方法先对样本数据进行预处理,利用粗糙集理论对决策树的测试属性约简;然后针对决策树ID3算法的缺陷,改进测试属性选择的方法,提出优化算法M ID3。通过2次优化建立的决策树短期负荷预测模型,在有更好的分类准确率的前提下具有较小的规模。结果表明,该方法可提高短期负荷预测的精度,具有一定的实用性和优势。 相似文献
15.
电力负荷具有一定的周期相似性,为此,提出一种基于子空间旋转矢量不变技术(E S P R I T)的综合负荷预测方法。对电力负荷数据进行移位平移处理构造出满足子空间不变性的数据矩阵,利用最小二乘法E S P R I T原理进行谐波检测,提取出各主要频率分量成分。利用K均值聚类法把提取的分量根据频率特点分为不同类型,之后建立不同预测模型对各部分进行独立负荷预测,最终得到综合的预测负荷值。E S P R I T算法具有较高的频谱分辨率,可降低原数据维数,且综合预测法能针对不同成分有更好的预测。最后仿真也证明了该方法预测的准确性及有效性。 相似文献
16.
针对短期电力负荷预测因受天气、温度、节假日等多重不确定性因素影响而造成精度低的问题,提出一种基于改进Autoformer模型的短期电力负荷预测模型。改变序列分解预处理的惯例,设计深度模型的内部分解模块,该模块提取模型中隐藏状态的内在复杂时序趋势,使得模型具有复杂时间序列的渐进分解能力;提出Nystrom自注意力机制,该机制利用Nystrom方法来逼近标准的自注意力机制。某地电力负荷预测实验结果表明,所提模型比基于标准Autoformer模型的短期电力负荷预测模型的时间复杂度更低,准确率更高。 相似文献
17.
18.
19.
针对不规律的、波动性大的复杂原始负荷数据导致预测精度不高等问题,设计了一种使用变分模态分解 (VMD)与改进粒子群算法 (IPSO)来优化最小二乘支持向量机 (LSSVM)的短期负荷预测模型.针对原始负荷数据存在的波动性大等缺陷,首先使用 VMD法将其分解为多个各异的模态分量,然后将分解后的各组数据分别输入改进的动态自适应惯性权重粒子群算法优化后的 LSSVM模型,最后将得到的多个各异的模态分量分别经模型预测出的结果进行相加得到最后取得的预测结果.经江苏省某市真实负荷数据仿真,验证了该预测模型的有效性及优越性. 相似文献