首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
纳米银线(Ag NWs)由于其优良的导电性、导热性、柔韧性及纳米材料独特的尺寸效应有望替代ITO成为新一代的透明导电膜材料而引起广泛的关注。综述介绍了多元醇法、晶种法、水热法、模板法、湿化学法及其他一些化学制备Ag NWs的方法,提出由实验室制备向工业化批量生产的发展方向。  相似文献   

2.
采用反应合成法与粉末冶金法制备了Ag/CuO复合材料,研究了2种制备方法所获得Ag/CuO复合材料的显微组织与性能。结果表明,反应合成法制备的Ag/CuO复合材料具有独特的环状组织特点,这一特点决定了反应合成制备的Ag/CuO复合材料的机械性能和电学性能要好于粉末冶金制备的Ag/CuO复合材料。在220V交流和24V直流实验条件下,反应合成制备的Ag/CuO复合材料的电寿命是粉末冶金制备的Ag/CuO复合材料的2倍。  相似文献   

3.
以阳极氧化铝(AAO)膜为模板,采用真空机械压注法制备铟锡(InSn)合金纳米线(NWs),然后采用“原位放电还原”方法在InSn NWs表面包覆Ru颗粒。随后,将复合材料在空气中进行热处理,合成RuO2/ITO NWs。最后,在H2气氛下还原RuO2/ITO NWs获得Ru/ITO NWs。结果表明,InSn纳米线直径约为40 nm,2 ~ 5 nm的Ru纳米颗粒均匀地包覆在ITO NWs的表面。此外,检测了所得Ru/ITO NWs对纤维素的催化热解性能,所得产物为1,6-脱水吡喃葡萄糖、乙醇醛和羟基丙酮,对比无催化剂、ITO NWs,Ru/ITO NWs所得产物,可以发现Ru/ITO NWs催化剂减少了1,6-脱水吡喃葡萄糖的产生,表明Ru纳米颗粒加剧了热解过程中的氧桥的断裂,加速生成乙醇醛和羟基丙酮,提高纤维素热解效率。同时对存在醚键的壬基酚聚氧乙烯醚也进行了热解分析,结果表明Ru/ITO NWs对醚键的断裂起明显的催化作用。  相似文献   

4.
研究了采用溶胶凝胶法和反应合成法制备的Ag/Al_2O_3粉体中纳米银的尺寸和分散度,并应用XRD、TEM、SEM技术对其进行表征。结果表明,反应合成法制备的粉体,Ag颗粒分布在氧化铝上面,尺寸大约为100nm,而溶胶凝胶法制备的粉体更为细小。溶胶凝胶法制备粉体中只存在Al2O3的结构,XRD表明并没有出现Ag或AgO的特征衍射峰,而且银高度分散在Al2O3的表面,没有进入Al_2O_3的晶体结构中。在氧气气氛下,反应合成法制备粉体时发生了固相变化,因此析出的Ag颗粒和基体的界面间存在键合的关系。  相似文献   

5.
对原位反应合成法制备Ag/Al2O3复合材料的热力学进行了计算分析。绘制了Gibbs自由能与温度关系图,结果表明:Ag与O2生成Ag2O是一种可逆反应,其可逆转变温度为462 K,而且还发现Al2O3的两种原位反应合成方式:当反应温度低于462 K,主要以Al与O2的反应生成;当反应温度高于462 K,主要以Ag2O和Al的置换反应生成,同时还对原位反应合成过程中的氧分压影响进行计算与分析。最后根据热力学计算分析结果,制备了Ag/Al2O3复合材料。  相似文献   

6.
运用Gibbs Helmholtz方程进行了反应合成法制备AgSnO2复合材料的热力学计算和数据分析。结果表明:当反应温度小于505K时,反应合成属于固-固间的置换反应;当反应温度大于505K时,反应合成属于固-气间的氧化反应。通过计算500K~1200K范围内生成物SnO,SnO2单位体积生成自由能和分解氧分压,确定以Ag20,Ag,Sn等为原料,反应合成的最终产物为Ag和SnO2,不存在SnO相。通过数据分析为制定反应合成法制备AgSnO2复合材料的工艺参数提供了理论依据。  相似文献   

7.
银纳米材料的可控合成研究   总被引:2,自引:0,他引:2  
纳米银的形貌、尺寸和尺寸分布可通过采用不同的合成技术和反应条件来调控.在大量阅读文献的基础上对纳米银的可控合成研究进行评述.结合本课题组在可控合成球形银纳米粒子方面的研究,较系统地讨论了纳米银的一些主要制备方法,包括化学还原法、微乳液法、模板法、电化学法、光诱导法、微波辅助还原法、超声波辅助还原法、辐射还原法等等,分析了纳米银制备过程中存在的不足,展望了纳米银合成研究的发展趋势.  相似文献   

8.
以微波溶剂热法制备纳米晶粉体Ag8SnSe6,通过X射线粉末衍射、透射电子显微镜和X射线光电子能谱等手段表征其组成。实验考察了超声波辐照、合成时间和有机溶剂填充度等条件对其产率和粒径的影响。探讨了微波溶剂热法合成纳米晶的机理。漫反射紫外可见吸收光谱(UV-Vis)表明其禁带宽度为2.14 eV,具有优良的半导体性能。  相似文献   

9.
高性能钕铁硼磁体广泛应用于各个领域。当Nd-Fe-B磁粉的晶粒尺寸接近单畴临界尺寸时,其矫顽力最大。化学法制备Nd-Fe-B磁粉可以很好地控制磁粉的微观结构和晶粒尺寸。同时,金属盐作为前驱体和简单的工艺流程可以降低成本和能源损耗。介绍了几种化学法制备Nd-Fe-B磁粉,分别为溶胶凝胶法、自燃烧法、微波辅助燃烧法、热分解法和机械化学法。研究了这些化学法的制备工艺和反应机理。最后,对不同化学方法合成的Nd-Fe-B磁粉的显微组织进行了对比分析,阐述了微观组织与磁性能之间的联系,展望了磁性材料未来的发展趋势。  相似文献   

10.
探索了制备纳米Skutterudite材料的一种新工艺——微波辅助湿化学法,研究了溶剂体系、反应温度和时间对产物合成的影响。提出采用结构简单、低粘度的乙醇与高沸点的有机溶剂组成的混合溶剂体系可以控制和加快反应进程,反应温度是控制Skutterudite相形成的主要因素。采用微波加热对湿化学反应机理没有根本改变,但是显著加快了反应进程,制备了粒径约25nm的CoSb3、RhSb3材料。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号