共查询到20条相似文献,搜索用时 62 毫秒
1.
为提高水库大坝变形预测精度,研究一种将人工电场算法(AEFA)与极限学习机(ELM)相结合的预测方法。以官地水电站72期大坝沉降数据为例,构建延迟时间为1,嵌入维数为2、3、5的3种ELM预测模型,利用AEFA优化ELM输入层权值和隐含层偏值,构建3种不同嵌入维的AEFA-ELM大坝变形预测模型,并构建对应的AEFA-支持向量机(SVM)、AEFA-BP作预测对比模型。将9种不同嵌入维的AEFA-ELM、AEFA-SVM、AEFA-BP模型用于实例大坝变形数据的训练和预测。结果表明:嵌入维数为2、3、5的AEFA-ELM模型对实例后10期大坝变形预测的平均相对误差分别为3.94%、4.08%、3.67%,预测误差均小于AEFA-SVM、AEFA-BP模型,具有较高的预测精度,对大坝变形预测研究具有一定的参考价值。 相似文献
2.
径流预测的精度关系到研究地区的水资源开发利用.为了提高径流预测的精度,将基于统计学理论的模式识别方法支持向量机引入到径流预测模型中.支持向量机中有2个参数惩罚因子C和核参数,这2个参数的选择对支持向量机的模型结构有重要的影响.为了准确地找到支持向量机的参数,将全局寻优的粒子群算法引入到支持向量机的2个参数优化中来.实例研究表明,粒子群优化支持向量机模型能够提高径流预测的精度. 相似文献
3.
4.
5.
6.
为提高需水预测精度,拓展生长模型在需水预测中的应用,提出基于人工生态系统优化(AEO)算法的组合生长需水预测模型。结合实例,选取6个标准测试函数在不同维度条件下对AEO算法进行仿真验证,并与鲸鱼优化算法(WOA)、灰狼优化(GWO)算法、教学优化(TLBO)算法和传统粒子群优化(PSO)算法的仿真结果进行比较。基于Weibull、Richards、Usher 3种单一生长模型构建Weibull-Richards-Usher、Weibull-Richards、Weibull-Usher、Richards-Usher 4种组合生长模型,利用AEO算法同时对组合模型参数和权重系数进行优化,提出AEO-Weibull-Richards-Usher、AEO-Weibull-Richards、AEO-Weibull-Usher、AEO-Richards-Usher需水预测模型,并构建AEO-Weibull、AEO-Richards、AEO-Usher、AEO-SVM、AEO-BP模型作对比,以上海市需水预测为例进行实例验证,利用实例前30组和后8组统计资料对各组合模型进行训练和预测。结果表明,在不同维度条件下,AEO算法寻优精度优于WOA、GWO、TLBO、PSO算法,具有较好的寻优精度和全局搜索能力。4种组合模型对实例预测的平均相对误差绝对值、平均绝对误差分别在0.94%~1.17%、0.30亿~0.37亿m3之间,预测精度优于AEO-Weibull等其他5种模型。4种组合模型均具有较好的预测精度和泛化能力,表明AEO算法能同时有效优化组合生长模型参数和权重系数,基于AEO算法的组合生长模型用于需水预测是可行和有效的。 相似文献
7.
支持向量机(SVM)学习参数存在选择范围大,盲目搜索花耗时间多、代价大,且难以获得最佳参数等问题.针对该问题利用人工鱼群算法(AFSA)搜寻SVM学习参数,提出AFSA-SVM预测模型,并与PSO-SVM、GA-SVM模型作对比.以云南省某水文站枯水期月径流预测为例进行实例研究,利用实例前30年、中间20年和后3年资料对模型进行训练、检验和预测.结果表明:AFSA-SVM模型对实例中间20年和后3年枯水期月径流预测的平均相对误差绝对值分别为5.04%、3.62%(5次平均),精度优于PSO-SVM和GA-SVM模型,表明AFSA-SVM模型具有较高的预测精度和泛化能力.AFSA算法具有全局寻优能力强、简单易实现、对初值参数选择不敏感等优点,利用AFSA算法优化得到的SVM学习参数有利于提高SVM模型的预测精度和泛化能力. 相似文献
8.
传统分解集成径流预测模型首先将整个径流序列分解成若干个子序列,再将这些子序列划分为训练期和验证期进行建模,错误地将验证期内预报因子数据视作已知数据处理,难以应用于实际径流预报工作中。并且,这类模型的预测结果仅为一个确定数值,难以描述由于径流序列随机性和波动性而导致的预测不确定性。为解决以上问题,本文结合变分模态分解方法、支持向量机模型和核密度估计方法,提出了一种可同时进行点预测和区间预测的新型逐步分解集成(VMD-SVM-KDE)模型,并提出了一种两阶段粒子群优化(TSCPSO)算法来优化模型参数。选用黄河流域月径流数据评估模型性能,研究结果表明:(1)VMD-SVM-KDE模型将单一SVM-KDE模型的确定系数(R2)和纳什效率系数(NSE)值由0.145~0.630提升至0.872~0.921,区间平均偏差(INAD)值由0.046~95.844降低至0.005~0.034,说明VMD-SVM-KDE模型显著改进了单一SVM-KDE模型的点预测和区间预测性能;(2)相较于一阶段PSO算法,TSCPSO优化算法将单一模型的R2和NSE值由0.145~0.480提升至0.309~0.630,INAD值由48.813~95.844降低至0.046~0.195,将分解集成模型的R2和NSE值由0.872~0.912提升至0.876~0.921,INAD值由0.007~0.034降低至0.005~0.014,说明TSCPSO优化算法可以克服SVM的过拟合问题,并能提高单一模型和分解集成模型的预测精度;(3)VMD-SVM-KDE-TSCPSO有效解决了传统分解集成预测模型存在的错误使用验证期内预报因子数据的问题,并在各站的R2和NSE值均约为0.9,INAD值的范围为0.005~0.014,具有更高的点预测和区间预测精度。文中模型可为优化径流预测模型和非平稳非线性水文序列预报提供新思路。 相似文献
9.
BP网络模型在径流预测中应用较广,效果较好.但目前对BP网络的初始权重及偏值、学习率、动量因子和训练次数多采用试错法来确定,具有较大的不确定性,影响到模型的收敛速度和精度.为此,提出一种利用粒子群收缩因子算法(CFPSO)对BP模型上述参数进行优化的方法,并利用径流预测实例进行检验,计算结果表明该优化方法能够提高BP模型的收敛速度和精度. 相似文献
10.
11.
基于作物水分生产函数下的限额灌溉制度优化研究 总被引:4,自引:0,他引:4
通过对小麦、玉米、棉花等主要农作物的分阶段受旱试验,获得了三年的限额灌溉试验观测数据;采用非充分灌溉条件下的土壤水分运动理论分析试验数据,建立了限额灌溉条件下的作物蒸发蒸腾模型。结合试验数据分析水分亏缺对作物产量的影响,采用多元回归分析法求解水分生产函数模型参数。采用动态规划法研究了水资源不足条件下的限额灌溉制度的多阶段优化法。研究成果表明,在产量能达到充分灌溉条件下产量的90%的情况下,可节约灌溉用水40%,能为水资源极其短缺地区的农业高效用水提供有力的技术支撑。 相似文献
12.
径流预测是水资源管理的基础,其准确性直接影响水资源优化调度的成果。本文针对径流时间序列的内在周期特性,引入一种基于总体经验模态分解(EEMD)的LSSVM组合预测模型,并提出一种基于动态逼近局部搜索粒子群的LSSVM参数寻优方法。基于分解一重构原则,论文首先利用总体经验模式分解法对径流系列进行周期分量提取,然后应用基于参数寻优的LSSVM模型对各分量进行预测和重构。以澧水流域江垭站的年径流预测为例进行模型检验,通过三种预测模型的结果对比,验证了本文组合预测模型的可靠性。 相似文献
13.
14.
为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过郊狼优化算法对神经网络(LSTM)模型进行参数优化;最后将各子序列预测值叠加得到月降水量预测值。将提出的模型应用于洛阳市栾川县白土镇和洛宁县故县镇两个雨量站的月降水量预测中,并与LSTM、COA-LSTM、WD-LSTM模型预测结果进行对比。结果表明:提出的WD-COA-LSTM模型的预测精度最高,说明小波分解和郊狼优化算法能有效加强LSTM模型预测的精度和泛化能力,为月降水量的预测提供了一种新的途径。 相似文献
15.
王琛涛 《中国水能及电气化》2016,(1):51-53
邓肯-张E-B模型常用来刻画土石坝本构关系,对其参数进行准确估计是实现土石坝应力应变分析的前提。本文针对工程中通过三轴试验确定其参数所存在的不足,着重阐释了群智能蛙跳优化算法在反演土石坝邓肯-张E-B模型参数中的应用,结合实测资料,通过正分析,证明了蛙跳优化算法在E-B模型参数反演中的合理性,以期为其他工程提供借鉴。 相似文献
16.
当前,分布式水文模型SWAT模型在国内水文模拟中应用较为广泛,但模型参数较多,人工经验设定参数存在工作量较为繁杂,且模拟精度不高的缺陷,为此本文引入POS优化算法,对SWAT模型参数进行批量优化,并以汤河西支流域为研究区域,结合区域实测水文数据,对比分析参数优化前后,对SWAT模型模拟精度的影响。研究结果表明: POS优化算法可实现SWAT模型参数的批量优化,相比参数优化前,参数优化后SWAT模型模拟径流深相对误差减少5.7%,流量过程拟合系数提高0.118。研究成果对于水文模型参数优化和自动率定提供参考价值。 相似文献
17.
针对混凝土坝变形具有较强的非线性特点、目前大坝变形预测模型出现参数过多及易陷入局部最优等问题,提出了一种深度学习中的门控制循环单元(GRU)模型,并结合贝叶斯优化算法(BO)对门控制循环单元的超参数进行优化,建立BO-GRU模型应用于混凝土坝变形预测。为检验模型的可行性,以实测变形监测数据为基础,并与极限学习机、相关向量机和基于遗传算法优化的支持向量机等模型预测结果进行对比。结果表明:该模型的泛化能力强、运行效率高,能有效运用于混凝土坝的变形预测。 相似文献
18.
新安江模型参数优选的改进粒子群算法 总被引:7,自引:0,他引:7
借鉴竞争演化和多种群混合的思想,对粒子群算法(PSO)进行改进,建立并行种群混合进化的粒子群算法(PMSE-PSO)和序列主-从种群混合进行的粒子群算法(SMSE-PSO)。数值模拟结果表明,这两种改进的粒子群算法具有较高的计算效率、较强的自适应性和稳定性。将PMSE-PSO和SMSE-PSO应用于新安江模型的参数优选中,通过与PSO和SCE-UA的比较可以看出,PMSE-PSO和SMSE-PSO不仅具有较好的全局优化性能和稳定性,而且在调用目标函数次数相同的情况下精度较高,是一种有效的新安江模型参数优选方法。 相似文献
19.
简要介绍了概念性降水—径流模型的多目标参数优选方法,以新安江模型为例,从Pareto支配法(Pareto Domination Approach)原理出发讨论了四目标函数情形下Pareto最优参数空间(Pareto Optimal Set)的Pareto优先排序(Pareto Preference Ordering)求解策略。通过对汉江上游江口流域降水—径流的新安江模型的模拟检验,证明该方法能够为模型提供全局最优参数,好于传统的单目标参数优选结果。 相似文献